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appropriate classifier used during drug discovery and genetic diagnosis using 
accessible training examples from healthy and cancer patients [13]. The 
previous proposed solutions to tackle the problem used correlation methods 
to select the genes [14]. The researchers use the Support Vector Machine 
techniques which are founded on the Recursive Feature Elimination (RFE) to 
develop a new technique of gene selection [15]. Additionally, they conducted 
experiments to illustrate that the selection of genes using their method will 
produce superior classification performance with high biological relevance 
to cancer [16]. In comparison to the baseline method, the researchers’ 
techniques spontaneously eradicate gene redundancy as well as produce high 
quality subsets of gene [17]. The technique discovered two genes in patients 
with leukemia that produce zero leave-one-out error whereas sixty four genes 
are essential for the baseline method to achieve the best outcomes (that is 
one leave-one-out error) [18]. Furthermore, in the colon cancer database, the 
baseline attained 86% accuracy while the researchers’ method achieved 98% 
accuracy using the four genes [19].

The Support Vector Machines usually integrate feature and pattern selections 
in a single consistent framework. They performed experiments involving two 
diverse cancer databases that demonstrated that classification performance 
can be impacted when one considers mutual information between the genes 
in gene selection process [20]. In comparison to the baseline technique that 
makes implied orthogonality presumptions, the researchers’ method obtained 
considerable improvements in the gene selection process [21]. Additionally, 
they validated the biological significance of the genes which were acquired 
through the Support Vector Machines. The high rated genes acquired through 
the process all had a probable link to cancer [22]. Alternatively, the other 
technique was irrelevant to cancer diagnosis despite selecting genes that are 
associated with the separation [23]. The SVM allowed the researchers to get 
nested subsets of genes that are compatible to a model selection method that 
achieves an optimal number of genes [24].  Furthermore, the investigation 
illustrates that the Recursive Feature Elimination is superior in relations to 
data over fitting as compared to other techniques inclusive of combinatorial 
search [25].

Scientists are now able to concurrently perform screening or expression of 
many genes using DNA micro-arrays to establish their status that is whether 
they are silent, hyperactive, or active in cancerous or normal tissue [1]. 
Given the fact that such new micro-array devices produce massive volumes 
of critical data, there is a need to develop new analytical methods that 
are capable of sorting out whether the cancer cellshaveunique signatures 
of gene tissue over the several types of cancer tissue or the normal cells 
[2].  The current multiple data sets which are publicly available on open 
source platforms such as Internet are characterized by many problems, 
for instance,a rather smaller number of experiments and a huge amount of 
gene expression values per experiment [3]. Additionally, it is evident that 
data analysis can be conducted from diverse perspectives. The majority 
of the empirical studies in the available relate to gene clusters which 
have been revealed through unsupervised learning methodologies [4]. 
Clustering is usually conducted together with other data dimensions; for 
instance, each experiment might link to one patient who might carry or 
not have a certain disease [5]. Therefore, clustering is mostly done with 
the intention of grouping the patients with comparable clinical history or 
record [6]. Presently, it is evident that the application of supervised learning 
to classify cancer and proteins has increasingly gained prominence [7].

In this case, the researchers seek to prove that the application of advanced 
classification algorithms such the Support Vector Machines (SVM) can 
greatly help in extracting a minor subsets of highly discriminant genes to 
create highly dependable cancer classifiers [8]. In addition, the researchers 
wanted to demonstrate how Support Vector Machines (SVMs) can be applied 
in data mining and knowledge discovery [9]. The Support Vector Machines 
play a great role with regards to discovering informative patterns as well 
as attributes or features (for instance, significant genes) [10]. Furthermore, 
the researchers seek to illustrate that SVMs have both quantitative and 
qualitative advantages as compared to other gene section techniques related 
to Colon cancer data. In addition, their method outdoes other schemes as it 
demonstrates high classification performance for minor gene subsets while 
making the selection of genes that have reasonable significance to cancer 
diagnosis and treatment [11].

The researchers seek to explore massive patterns of gene expression data 
which have been recorded on DNA micro-arrays to tackle the problem 
of selection of a minor gene subset [12]. Furthermore, they developed 
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