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Introduction

The notion of statistical convergence is closely related to the
density of the subset of N. So we will define on triple sequence
of y - uniform and (4,y)- uniform density of the subset of the
time scale. We will focus on constructing a concept of triple
sequence of y- uniform or (4,y)- uniform statistical convergence
and y- uniform statistical Cauchy functions on time scales of
fractional order, i.e., A* depends on y and (4,y) respectively. We
here recall some basic concepts and notations from the theory
of time scales. A time scale is an arbitrary nonempty closed set
of real numbers. We use the symbol T to denote a time scale. A
time scale has the topology that it inherits from the real num-
bers with the standard topology. It allows unifying the usual dif-
ferential and integral calculus for one variable. One can replace
the range of definition R of the functions under consideration
by an arbitrary time scale T.

The forward jump operator 6:T—T can be defined by ¢, =
inf{(m_n_k ) € T:(m_n_k_)>(mnk) }, for (m,nk) € T, and the
graininess function u:T—[0,0] is defined by u, =0, - (mnk).
In this definition, we put inf¢ = supT, where ¢ is an empty set.
A half open interval on an arbitrary time scale T is given by

(a,b).= {(m,n,k) € T:a < (m,n,k) <b}.

Now, let A4 denote the family of all left closed and right open
intervals of T of the form [a,b]. Let (m n_k): A—[0,00] be
the set function on A such that (m_n_k ) ([a,b],) = b-a. Then, it
is known that (m_n_k ) is a countably additive measure on A.
Now, the Cara theory extension of the set function (m n_ k)

associated with family A is said to be the Lebesgue A*- measure
on T and is denoted by p, . In this case, it is known that if a €
T-{maxT}, then the single point set {a} is A*- measurable and
. (a)=c(a)-a.1f ab € Tand a <b then 4, ((a.b),)=b-0(a).
If a,beT —{maxT},a<b;u,. (a.b);)=0c(b)-o(a) and
Hye ((a’b)T):U (b)—a.. In this study, introduce the triple se-
quence x=(x ) of y- uniform and (4,y)- uniform density of a
set and y- uniform and (A,y)- uniform statistical convergence
and some properties of y- uniform and (4,y)- uniform statistical
convergence on time scales. A triple sequence (real or complex)
can be defined as a function x:NXNxN—R(C), where N, R and
C denote the set of natural numbers, real numbers and complex
numbers respectively. The different types of notions of triple
sequence was introduced and investigated at the initial by [1-
10].

A triple sequence x = (x ) is said to be triple analytic if

mnk

1
k
supm’n’k |xmnk |’"+'H < 00,

The space of all triple analytic sequences are usually denoted

by A’. Atriple sequence x = (x, ) is called triple gai sequence if

((m +n+ k)!|xmnk|)ﬁ — Oasm,n,k — oo

The notion of difference sequence spaces (for single sequences)

[11].



Z(A)={x=(x,)ew:(Ax,) e Z}

for Z = ¢.c, and /_, where Ax, = x-x for all k € N.

k+1

The difference triple sequence [5] and is defined as

Axmnk = xmnk - xm,n+1,k - xm,n,k+1 + xm,n+1,k+1 _xm+1,n,k +

+X

X m+1,n,k+1 - xm+1,n+1,k+1

m+1,n+1,k

and onmnk = <xmnk.>

Some New Difference Triple Sequence Spaces
with Fractional Order

Let I'(a) denote the Euler gamma function of a real number a.
Using the definition I'(a) with o € {0,-1,-2,-3,...} can be ex-

pressed as an improper integral as follows: " () = Ie"xxa"ldx
0

where a is a positive proper fraction. We have defined the gen-

eralized fractional triple sequence of difference operator

)= Z::OZT:OZLO =D D@+ X
wu+v+w)T(a—(u+v+w)+1)

a
Ay (xmnk +u,n+v,k+w

In particular, we have

—9
(melntl k) — %%

—(1/2) _
A (xmnk) =X, T 5/ 16x(m+l,n+l,k+1) + Voo,

AP (x, )=x,  —4/81x — Dooe,

(m+1,n+1,k+1)

Now we determine the new classes of triple difference sequence
A (x) as follows:

A7 (x)z{x:(xmnk)ew3 :(Afx)eX},

where

(_l)u+v+w1—~(a + 1)

A%(x,, ) =20 T2 30
7 ) = ZicoZ oo (u+v+w)!T(a—(u+v+w)+1)

xm+u$/1+v,k+w

and X € Z?A (X) = Z; (A;O:xmnk) = lumnk (AZX)

= {fmﬂk (((m +n+ k)! | ATX, |)m ,6}}

Proposition1(i)Foraproperfractiona, A WXWXW—WxWxW
defined by equation of (4.1) is a linear operator.

(i) For ap>0, A“(A(x,,))=A""(x,,) and

A* (A “ ('xmnk )) = Xk

Proof. Omitted.

Proposition 2 For a proper fraction o and f be an Musielak-Or-
licz function, if %} (X) is a linear space, then %, (X) also a

linear space.

Proof. Omitted.

Definitions and Preliminaries

Throughout the article w?,x* (A),A3 (A) denote the spaces of all,
triple gai difference sequence spaces and triple analytic differ-
ence sequence spaces respectively.

Subramanian N and Esi A (2015) [8] introduced by a triple en-
tire sequence, triple analytic sequences and triple gai sequence.
The triple sequence spaces of ° (A) and A3 (A) are defined as
follows:

Z3(A):{xe w :((m+n+k)!|Axm"k

/m+n+k
|) — Oasm,n,k — oo}

and

Ax

mnk

A’ (A) = {x ew SSUP,, i

1/m+n+k
<00

Definition 1 An Orlicz function [12]isa function M:[0,00)—[0,0)
which is continuous, non-decreasing and convex with M(0)=0,
M(x)>0, for x>0 and M(x)—x as x—o0. If convexity of Orlicz
function M is replaced by M(x+y) < M(x) + M(y), then this
function is called modulus function. Lindenstrauss J, Tzafriri
L [13] used the idea of Orlicz function to construct Orlicz se-
quence space.

A sequence g = (g, ) defined by
G (V) =sup{{Vu=( /) () :u 20} ,m,nk =1,2,--

is called the complementary function of a Musielak-Orlicz
function f. For a given Musielak-Orlicz function f, [14] the
Musielak-Orlicz sequence space ¢, is defined as follows

mnk

tfz{xew3:1f(|x

1/m+n+k
) =0, asm, n k— o

where [ is a convex modular defined by

If (x) = z Or:j:l z ::l z Zj:l mnk (l xmnk ‘)”mek > X = (xmnk) € tj

We consider t/.equipped with the Luxemburg metric

1/m+n+k
d(53) =T X X i fo (Lj

mnk



Definition 2 A subset E of N is said to be uniformly dense if
u(E)=lim,,, "Ouifwz na 2 v 2 i Ze ((mnk) +7) = a uniformly iny or,

equivalently lim,,, LE Ny +1Ly+2,-7+@w)}|=a,
uvw

uniformly in y, where y=0,1,2,... and y, is characteristic func-
tion.

Definition3 Atriplesequencex=(x_mnk)bearealorcomplexval-

uniformly in vy, triple sequence is said to be y- uniform statisti-
cally convergent to | for £>0.

Definition 4 Let KEN and define the (A,y)- uniform density of
K by

—)ooi|{(uvw)+y:l

uvw

J(K)=lim,

uvw

<(myn, k) < (uw)+y:(m,nk)e K}|.IJ K reduces to the 7 (k) in

case of A =uvw for all u,v,w € N.

Definition 5 A triple sequence x = (x_ ) is said to be (A,y) - uni-
form statistically convergent to | if

lim L|{(uvw)+7/—/1 <(www)+y:x

u,v,w—>0 )b uvw mnk

~1z &0

uvw

for every >0 uniformly in y.

Definition 6 A triple sequence of real valued function x_,
measurable (in Lebesgue sense) on the interval (1,00), is said to
be strongly summable to 1 =1 if

uvw

lim,,, —>ooL”j|xmk ~1| dmdndk =0,1< p < oo
uvw

111

Definition 7 Let AEA, let p be a real number, and x_ be a real
valued function which is measurable (in Lebesgue sense) on the
interval (1,00), if

hm“!”»wﬁw %J.uuzﬁl J‘:—A‘,H J.:—/I+1| Xk 1" dmdndk =0

uvw

Definition 8 Suppose that Q is a A0~ measurable subset of T
then, for (m,n,k)€T is defined Q(m,n,k) by ©(m,n,k) = {(m_n_
k)E(m, n; k)),(m,n,k)] :m_ns k €EQ}. The density of Q on T,
denoted by

H & (Q)
" aya([myngk,), (k)]

provided that the above limit exists. The triple sequence X is
statistically convergent to a real number 1 on T if, for every >0
J; ({m,nkET:[x  -1>e} )=0 where X:T°—>R’ is a A® - mea-
surable function.

mnk

Definition 9 A triple sequence X:T*—R? be a A*- measurable
function X is statistical Cauchy on T if, for each € > 0, there
exists a number (m,n,k ) > (mg,n;k;) € T such that

uAa({(msnxks) € [(mOnOkO )’ (mnk)]T :| xm‘n‘/f\ - xmﬂuk, ‘2 & _

lim =0.
wo([(myngky), (mnk)];)

m,n,k—x

Definition 10 Let o be a proper fractional order and Q be a
Ay“ - measurable subset of T. Then Q((m,n,k),y) is defined by
Q((m,n,k),y)={(mnk_ )E[y+(mnk )-1,(mnk)+y):(mnk )EQ},
for (m,n,k)€T.

The y- uniform density of Q on T, denoted by J3(Q) as follows:

Hyo (C(m,n,K), 7))

jg(Q) =1lim >
/uAg [y + (mongky) =1, (mnk) + y 1,

m,n,k—o0

provided that the above limit exists.

Definition 11 Let o be a fractional order, f be a Musiclak-orlicz
function and a triple sequence X:T*—R? be a A *- measurable
function. Then the triple sequence X is y- uniform statistically
convergent to a real number 1 on T if

g () 17 + (k)L ) 7)o S = B D)
Hyo ([ +(myngky) =1, (mnk) + 71 B

lim

>
m,nk—0

uniformly in y for every €>0. In this case, we write

X

Stp—lim,, .., X, =1. The setof all y - uniform statistically

A

convergent functions on T will be denoted by S7; .

Definition 12 Let a be a fractional order, f be a Musielak-orlicz
function and a triple sequence X:T*—R? be a A * measurable
function. Then the triple sequence X is an y- uniform statistical
Cauchy function on T if there exists a number (mn k) > (m,
nk )ET such that

yﬁ? ((mnk,) €[y +(mynyk,)—1,(mnk)+y): f,..( Xy ks -1 ¢)) o
# ([ + (mynohy) =1 (mnk) + 71,) o

lim

m,nk—o

for each £>0 uniformly in y.

Definition 13 Let a be a proper fractional order and
Q((m,n.k),y,1) bea A, - measurable subset of T, is defined by

Q((m,n,k),y,A)={(mnk)E[(mnk)+y-A_ +(mn Kk )-
1,(mnk)+y):(m n k )EQ}, for (m,n,k)ET and it is denoted by

i) (Q) as follows:

H. (Q(m,n,k),y,1))
3N(Q)= lim EED
makse g ([(mnk)+ 7=,

‘mnk

+(mynoky) =1, (mnk) + y1p)’

provided that the above limit exists.

Definition 14 Let o be a fractional order, f be a Musielak-orlicz
function and a triple sequence X:T*—R3 be a A, - measurable



function. Then the triple sequence X is (A,y)- uniform statisti-
cally convergent to a real number 1 on T if

o B ) URY 47— B + () ~L 1K) +1): foe s 1))
1m - =Y,
i Ay UME) + 7 = 7+ (o) =1, (k) + 71,)

uniformly in y for every €>0. In this case, we write

A Ay
Sp=lim, ., X, =1 The set of all (A,y)- uniform statisti-

cally convergent functions on T will be denoted by Sf/

Main Results

Proposition 3 If f be a Musielak-Orlicz function and two triple
ALy

sequences X,Y:T*—R? with S, — li{n X, =1 and
A Ay
Sp— 1imw X, =1, then the following statements hold:
A l}/
@Sp—- lim (X,,+Y, )=+,
m,n,k—>0
A ﬂ}/

@i)Sy~ lim (¢, X,,)=c.ll(ceR).

Proof. Omitted.

Theorem 1 Let o be a fractional order, f be a Musielak-Orlicz
function and a triple sequence X:T°—>R*be a A, - measurable
function. Then the triple sequence X is (A,y) - uniform statis-
tically convergent on T& the triple sequence X is a (A,y)
- uniform statistical Cauchy function on T.

Proof. This prove is similar to Theorem 3 of [15].

ANY A ﬂ,}/
Theorem 2 Let o be a fractional order and ST < St <

+ (mynyky) —1,(mnk) +y);)

‘mnk

inf u, ([(mnk)+y -4,

11mm,n,k4>m

/jA;g ([y +mynek o) —1,(mnk) + y 1)

Proof. For a given £>0, we have
Hye ((mdnl\kA ) € [mynyk,]1-1,(mnk)+ ;/)T Lol X —1 >e)o

Hyo ((mn k) € (mnk) 47 = 2,5+ (monohy) =1 (mnk) 4 7)1 £ (1 X, —126))-

Therefore,

Hye ((m.snsks) € [myneky]—1,(mnk) + V)T iy ( X, -z é&))x

iy, (7 + (o) =1 (k) + 7))

Uy, @ ((m\n\k‘_) e [(mnk) 7 = A + (monoky ) =1, (mnk ) + ;/:lT By - (\ X, 1 \) > g))
H (7 + (mongky) =1, (mnk) + 7))
4, /Ja(((mnk)Jr ¥ = A +(monoky) =1, (mnk) + y)T ) .
Hye ((;/ +(mynoky) =1, (mnk) + y)T)
1
A () 7= 2+ () =1, k) + 7).
,UAE’,."V)((mvnvk\) € (mnk)+y = A, +(mgnky)=1,(mnk)+ )y : f,..(| Xmnk —1])2¢))

>

Hence by using (6.1) and taking the limit as m,n,k—o0, we get

) (X, )= z[;if’”}

Definition 15 Let o be a fractional order and a triple sequence
X:T3—R? be a A*- measurable function and 0<p<oo, then X
is strongly p- ces'aro summable on T if there exists some 1ER
such that

1
1im Mo A, mn
m,n,k—o :uZ([(mOnOkO)D(mnk)T])J‘[( oMok )(mnk)r |
Som(xmn k=117 A“(xmnk))=0.

s TS

The set of all p - cesaro summable functions on T will be de-
noted by [Wp]Tf.

Definition 16 Let a be a fractional order and a triple sequence
X:T’->R’beaA, - measurable function and 0<p<eo, X is said
to be (A,y) uniformly strongly p- summable on T if there exists
some 1€R such that

1
m
m,n ko0 /JZ(M) ([(mnk)+ y — Amnk + (myn k) —1,((mnk) + y). 1)

J [(mnk)+;/7)nmn/c+(m0n0k0)71,((mnk)+y)']I‘]/;nnk (‘ xmvn‘.kr _1 ‘1’ Aa(xm,nrk‘ )) = 0

R f
In this case, we can write [W,p} -limX, ,, =L
a ik,

The set all (A,y) uniformly strongly p- summable function on T
-
will be denoted by I:W,,,} .
T
Lemma 1 Let o be a fractional order and a triple sequence
X:T*>R*be a Ay measurable function and

Q((m,n,k),y,A)={(mnk )E[(mnk)+y-A
1,(mnk)+y)_T:(mnk )EQ},

+(m0n0k0)—

mnk

for €>0. In this case, we have

o 1 (23
5, ©Om 10,7520 < — [ i T (s, =1 A ()

1
g,[ (o7~ ok Y1 oy 73Sk Ul X, =11 A (X))

Proof. This can be proved by similar in [16].

Theorem 3 Let a be a fractional order and a triple sequence



X:T?*->R3 be a A(A - measurable function, 1ER and 0<p<oo,
then the following statements are equivalent.

A

@) [VI/}/p]% c S{(ﬂ,}’)

(i1) If a triple sequence X is (A,y) uniformly strongly p- summa-
ble to 1, then

~f(Ay)

(i) ST X =1

- hmmnk%oo mnk —
and a triple sequence X is a bounded function, then the triple

sequence X is uniformly strongly p- summable to 1.

Proof (i) Let >0 and [Wyp ],f- lim X

mnk—oco © mnk

=1. We can write

I [(mnk)+y 2, k+(monok0)71,((mnk)+y)T]fmnk (I KXmongk, —11" A" (xml\nlkl )=

iy

'[ Q((m,n,k),y,2) fmnk (‘ xmgn»k» _1 ‘p Aa (‘xm»n\k‘ )) =4

&7 A% (Q(m,n,K), 7, 2).

Therefore,

A f(27)

X, ., =1=Sr X, =L

mnk —>c0 - hmmnk—>oo mnk

C
[VV}/p ]T - 11m
(i1) Let a triple sequence X be (A,y)- uniformly strongly p- sum-

mable to 1. For given £>0, let

Q((m,n,k),y,A)={(mn k)E[(mnk)+y-A__ +(mnk)-

s S 8

1,(mnk)+y)_T:(mnk)EQ}
on time scale T. Then, it follows from Lemma 1 that

Sp,UA;( (Q((m,n,k), }/92’)) <

_[ [(mnk)+7*ﬂmnk+(m0n0k0)71,((mnk)+y)’]]')]fmnk ( KXo, k, =1 A" (xm; ek, ).

Dividing both sides of the last inequality by
(k) + 7 = 2y + (myngky) =1, ((mnk) + 7),])

and taking limit as m,n,k—o0, we get

g, ((mm0).7.2)

lim,, ,, —> o0 <
My ([((mnk)+y = A, + (monoky) =1, (mnk)+ y 1)
1 .. 1
—lim, ,, —® X
&’ Hyo ([((mnk)+y =2, + (monoky) =1, (mnk) +y1y)

_[ (mnk) 47—y +(m‘,m,k(,)71,((m/xk)+y)v“-]f;rmk ( Xk, 117 A% (xnwk\ )=0

~f(Ar)

which yields Sr  —lim X, =1

mnk—o0 <% mny

(iii) Let a triple sequence X be bounded and statistically con-
vergent to 1 on T then, there exists a positive number M such

that

Xy | MY (mnk,) €T and also

sTsTs

iy, (Qmn.k).7.)
Hye ([(mnk) +y = A,y + (mynoky) =1, (mnk) + ¥y

lim

m,n,k—>o0

) (6.2)

where Q((m,n,k),y,A) is as before. Since

J‘ [(mnk)+y—Amnk+(myngk, )—l‘((mnk)+y).ﬂ-]<f‘mnk(‘ xm\nb\.kb\ _1 ‘P Aa (xnp\n‘.k\ )) =

J. Q((m,n,/c),y,)v)-f;nnk (| xm\.n‘k‘. -1 |l7 Aa (xm‘.n\k‘ )) +

_[[(mnk)+;/—lmnk+(mOnOkO)—1,((mnk)+;/)T]\Q((m,n,k),y,l)fw(\xmw‘ -1 A%(x,,,, N <

MUY [ gt o [A G N1+

&y (k) + 7= A+ (myn k) =L (k) + 71,).

‘We obtain

limm n.k—0 1 %
’ Hy, ([(mnk) +y = 4,5 + (mynoky) =1, (mnk) + y1;)

J. [mik )= + (oo ) -1 ((mak )47 )] S (l Xonn k, -1 A" (xm\n\k\ )

KA, (.. K), 7. 1)
+&

S(MA[1P xlim, |, —
ok ,uAW)([(mnk) + 7 = A + (monoky) —1,(mnk)+ 1)

(6.3)
Since ¢ is abitrary, the proof follows from (6.2) and (6.3).

Theorem 4 Let o be a fractional order and X be a triple se-
quence of Ar- measurable function. Then

X

mgngk

mnk —»o0 g

=1<:>A;‘—

measurable set QT such that 35 (Q) =landlim_ X =1,
(m,n,k)€Q((m,n,k),y,1).

Proof. It is similar way of Theorem 3.9 in [16].

Conclusion

In this study, introduced the triple sequence of statistical con-
vergence, the concepts of y and (A,y)- uniform density and uni-
form statistical convergence were defined on an arbitrary time
scale. Defined y- uniform Cauchy functions on a time scale also
obtained some relations between these spaces.
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