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Abstract

We introduce a triple sequence notion of uniform statistical convergence on an arbitrary time scale. However, we will γ - uniform Cauchy 
function on a time scale with respect of fractional order Δα of Musielak - Orlicz function. 2010 Mathematics Subject Classification. 40F05, 
40J05, 40G05.
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Introduction

The notion of statistical convergence is closely related to the 
density of the subset of N. So we will define on triple sequence 
of γ - uniform and (λ,γ)- uniform density of the subset of the 
time scale. We will focus on constructing a concept of triple 
sequence of γ- uniform or (λ,γ)- uniform statistical convergence 
and γ- uniform statistical Cauchy functions on time scales of 
fractional order, i.e., Δα depends on γ and (λ,γ) respectively. We 
here recall some basic concepts and notations from the theory 
of time scales. A time scale is an arbitrary nonempty closed set 
of real numbers. We use the symbol T to denote a time scale. A 
time scale has the topology that it inherits from the real num-
bers with the standard topology. It allows unifying the usual dif-
ferential and integral calculus for one variable. One can replace 
the range of definition R of the functions under consideration 
by an arbitrary time scale T.

The forward jump operator σ:T→T can be defined by σmnk = 
inf{(ms ns ks ) ∈ T:(ms ns ks )>(mnk) }, for (m,n,k) ∈ T, and the 
graininess function μ:T→[0,∞] is defined by μmnk = σmnk - (mnk). 
In this definition, we put infϕ = supT, where ϕ is an empty set. 
A half open interval on an arbitrary time scale T is given by      
(a,b)T = {(m,n,k) ∈ T:a ≤ (m,n,k) < b}.

Now, let A denote the family of all left closed and right open 
intervals of T of the form [a,b]T. Let (ms ns ks): A→[0,∞] be 
the set function on A such that (ms ns ks) ([a,b]T) = b-a. Then, it 
is known that (ms ns ks) is a countably additive measure on A. 
Now, the Cara theory extension of the set function (ms ns ks) 

associated with family A is said to be the Lebesgue Δα - measure 
on T and is denoted by μΔα. In this case, it is known that if a ∈ 
T-{maxT}, then the single point set {a} is Δα - measurable and 

( ) ( )Ä
a a aαµ σ= − . If a,b ∈ T and a ≤ b then ( )( ) ( )Ä

, .a b b aαµ σ= −  
If ( )

, { }, ; , ) ) ( ) ( )( Ta b T maxT a b a b b aαµ σ σ
∆

∈ − ≤ = −  and 
( )( ) ( )Ä

, .a b b aαµ σ= − . In this study, introduce the triple se-
quence x=(xmnk) of γ- uniform and (λ,γ)- uniform density of a 
set and γ- uniform and (λ,γ)- uniform statistical convergence 
and some properties of γ- uniform and (λ,γ)- uniform statistical 
convergence on time scales. A triple sequence (real or complex) 
can be defined as a function x:N×N×N→R(C), where N, R and 
C denote the set of natural numbers, real numbers and complex 
numbers respectively. The different types of notions of triple 
sequence was introduced and investigated at the initial by [1-
10].

A triple sequence x = (xmnk) is said to be triple analytic if

1

, , .m n k
m n k mnksup x + + < ∞

The space of all triple analytic sequences are usually denoted 
by Λ3. A triple sequence x = (xmnk) is called triple gai sequence if

( )( )
1

! 0as , , .m n k
mnkm n k x m n k ∞+ ++ + → →

The notion of difference sequence spaces (for single sequences) 
[11].
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( ) ( ) ( ){ }Ä : Äk kZ x x w x Z= = ∈ ∈

for Z = c,c0 and l∞, where Δxk = xk-xk+1 for all k ∈ N.

The difference triple sequence [5] and is defined as

, 1, , , 1 , 1, 1 1, ,

1, 1, 1, , 1 1, 1, 1

mnk mnk m n k m n k m n k m n k

m n k m n k m n k

x x x x x x
x x x

+ + + + +

+ + + + + + +

∆ = − − + − +

+ −

and 0 .mnk mnkx x=∆

Some New Difference Triple Sequence Spaces 
with Fractional Order

Let Γ(α) denote the Euler gamma function of a real number α. 
Using the definition Γ(α) with α ∉ {0,-1,-2,-3,...} can be ex-

pressed as an improper integral as follows: ( ) 1

0

xe x dx
∞

αα − −Γ = ∫
where α is a positive proper fraction. We have defined the gen-
eralized fractional triple sequence of difference operator

0 0 0 , ,
( 1) ( 1)( )

( )! ( ( ) 1)

u v w

mnk u v w m u n v k wx x
u v w a u v w

α
γ

α+ +
∞ ∞ ∞
= = = + + +

− Γ +
∆ = Σ Σ Σ

+ + Γ − + + +

In particular, we have

(1/2)
( 1, 1, 1)( ) 1/16 ? .mnk mnk m n kx x x + + += − −∆ 

(1/2)
( 1, 1, 1)( ) 5 /16 ? .mnk mnk m n kx x x−

+ + += +∆ + 

(2/3)
( 1, 1, 1)( ) 4 / 81 ? .mnk mnk m n kx x x + + +∆ −= − 

Now we determine the new classes of triple difference sequence 
Δγ

α (x) as follows:

( ) ( ) ( ){ }3: : ,mnkx x x w x Xα α
γ γ∆ = ∈ ∈∆

where

0 0 0 , ,
( 1) ( 1)( )

( )! ( ( ) 1)

u v w

mnk u v w m u n v k wx x
u v w a u v w

α
γ

α+ +
∞ ∞ ∞
= = = + + +

− Γ +
∆ = Σ Σ Σ

+ + Γ − + + +

and 3 3( ) ( ) ( )f f mnk mnkX x x xα α
γ γχ χ µ∆∈ = ∆ = ∆

( )( )
1

!| | ,0 .m n k
mnk mnkf m n k xα

γ
+ +

  
= + + ∆  

    

Proposition 1 (i) For a proper fraction α,    Δα:W×W×W→W×W×W 
defined by equation of (4.1) is a linear operator.

(ii) For α,β>0, ( )( ) ( )mnk mnkx xα β α β+∆ ∆ = ∆  and 

( )( )mnk mnkx xα α∆ ∆ =

Proof. Omitted.

Proposition 2 For a proper fraction α and f be an Musielak-Or-

licz function, if 3 ( )f xχ  is a linear space, then 
3 ( )f x

α
γχ ∆

 also a 
linear space.

Proof. Omitted.

Definitions and Preliminaries

Throughout the article w3,χ3 (Δ),Λ3 (Δ) denote the spaces of all, 
triple gai difference sequence spaces and triple analytic differ-
ence sequence spaces respectively.

Subramanian N and Esi A (2015) [8] introduced by a triple en-
tire sequence, triple analytic sequences and triple gai sequence. 
The triple sequence spaces of χ3 (Δ) and Λ3 (Δ) are defined as 
follows:

( ) ( )( ){ }1/3 3 : ! 0 , ,
m n k

mnkx w m n k x asm n kχ ∞
+ +

= ∈ ∆ →∆ + + →

and

( ) { }1/3 3
, ,: .m n k

m n k mnkx w sup x + +∈Λ = ∆ < ∞∆

Definition 1 An Orlicz function [12] is a function M:[0,∞)→[0,∞) 
which is continuous, non-decreasing and convex with M(0)=0,    
M(x)>0, for x>0 and M(x)→∞ as x→∞. If convexity of Orlicz 
function M is replaced by M(x+y) ≤ M(x) + M(y), then this 
function is called modulus function. Lindenstrauss J, Tzafriri 
L [13] used the idea of Orlicz function to construct Orlicz se-
quence space.

A sequence g = (gmn) defined by

( ) ( )( ){ }sup : 0 , , , 1, 2,mn mnkg v v u f u u m n k= − ≥ = 

is called the complementary function of a Musielak-Orlicz 
function f. For a given Musielak-Orlicz function f, [14] the 
Musielak-Orlicz sequence space tf is defined as follows

( ){ }1/3 : 0 ,
m n k

f f mnkt x w I x
+ +

= ∈ →  as m, n, k → ∞

where If is a convex modular defined by

( ) ( ) ( )1/
1 1 1 | | , .m n k

f m n k mnk mnk mnk fI x f x x x t+ +∞ ∞ ∞
= = == = ∈∑ ∑ ∑

We consider tf equipped with the Luxemburg metric

( )
1/

1 1 1
| |, .

m n k
mnk

m n k mnk
xd x y f

mnk

+ +
∞ ∞ ∞
= = =

 
=  

 
∑ ∑ ∑
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Definition 2 A subset E of N is said to be uniformly dense if 

( ) ( )( )1 1 1
1lim u v w

uvw m n k Eu E mnk a
uvw

χ γ= = == →∞ + =∑ ∑ ∑  uniformly in γ or, 

equivalently 1lim { 1, 2, , ( )} | ,uvw E uvw a
uvw

γ γ γ→∞ + + ⋅⋅⋅ + =  

uniformly in γ, where γ=0,1,2,... and χE is characteristic func-
tion.

Definition 3 A triple sequence x=(x_mnk ) be a real or complex val-
ued sequence. If , ,

1lim |{ ( , , ) ( , , ) :| 1| } | 0u v w mnkm n k u v w x
uvw

γ γ→∞ ≤ ≤ + − ≥∈ =

uniformly in γ, triple sequence is said to be γ- uniform statisti-
cally convergent to l for ε>0.

Definition 4 Let K⊂N and define the (λ,γ)- uniform density of 
K by

, ,
1( ) lim |{( )

( , , ) ( ) : ( , , ) } | .

u v w uvw
uvw

K uvw

m n k uvw m n k K K

γ
λ

γ
λ

γ λ
λ

γ

= →∞ + =

≤ ≤ + ∈

I

I  reduces to the ( )KγI  in 
case of λuvw = uvw for all u,v,w ∈ N.

Definition 5 A triple sequence x = (xmnk) is said to be (λ,γ) - uni-
form statistically convergent to l if

, ,
1lim |{( ) ( ) :| 1| } | 0u v w uvw mnk
uvw

uvw uvw xγ λ γ ε
λ→∞ + − ≤ + − ≥

for every ε>0 uniformly in γ.

Definition 6 A triple sequence of real valued function xmnk, 
measurable (in Lebesgue sense) on the interval (1,∞), is said to 
be strongly summable to l = lx if

1 1 1

1lim | 1| 0,1
u v w

p
uvw mnkx dmdndk p

uvw
→∞ − = ≤ < ∞∫ ∫ ∫

 

Definition 7 Let λ∈Λ, let p be a real number, and xmnk be a real 
valued function which is measurable (in Lebesgue sense) on the 
interval (1,∞), if 

, , 1 1 1

1lim | 1 0
u v w

u v w p
u v w mnku v w

uvw

x dmdndk
λ λ λλ→∞ − + − + − +

− =∫ ∫ ∫

Definition 8 Suppose that Ω is a Δ^α- measurable subset of T 
then, for (m,n,k)∈T is defined Ω(m,n,k) by Ω(m,n,k) = {(ms ns 
ks)∈(m0 n0 k0),(m,n,k)]T:ms ns ks∈Ω}. The density of Ω on T, 
denoted by 

( ) ( ) ( )
, ,

0 0 0

, lim
([( ), ( )] )m n k m n k mnk

µ α
µ α

∆
→∞

∆

Ω
=Ω Ω 



I I

 

provided that the above limit exists. The triple sequence X is 
statistically convergent to a real number 1 on T if, for every ε>0 

I  ({(m,n,k)∈T:|xmnk-l|≥ε} )=0 where X:T3→R3 is a Δα - mea-
surable function.

Definition 9 A triple sequence X:T3→R3 be a Δα - measurable 
function X is statistical Cauchy on T if, for each ε > 0, there 
exists a number (m1,n1,k1) > (m0,n0,k0) ∈ T such that

1 1 10 0 0

, ,
0 0 0

({( ) [( ), ( )]
lim 0.

([(
:|

), ( )]
|

)
s s ss s s

m

n

n

m k m n k

k

xm n k m n k mnk
m n k mnk

x εµ α
µ α

∆

→∞
∆

∈ − ≥
=



Definition 10 Let α be a proper fractional order and Ω be a 
Δγ

α - measurable subset of T. Then Ω((m,n,k),γ) is defined by 
Ω((m,n,k),γ)={(msnsks )∈[γ+(m0n0k0)-1,(mnk)+γ):(msnsks)∈Ω}, 
for (m,n,k)∈T.

The γ- uniform density of Ω on T, denoted by ã ( )ΩI  as follows:

,
0

ã
,

0 0

( (( , , ), ))
( ) lim ,

([ ( ) 1, ( ) ]m n k

m n k

m n k mnk
α
γ

α
γ

µ γ

µ γ γ
∆

→∞

∆

Ω
Ω =

+ − +


I

 
provided that the above limit exists.

Definition 11 Let α be a fractional order, f be a Musielak-orlicz 
function and a triple sequence X:T3→R3 be a Δγ

α - measurable 
function. Then the triple sequence X is γ- uniform statistically 
convergent to a real number l on T if

0 0 0

, ,
0 0 0

(( ) [ ( ) 1, ( ) ) : (| | ))
lim 0,

([ ( , )) 1 ( ) ]
s ss s s mnk m n k s

m n k

m n k m n k mnk f x l

m n k mnk
α
γ

α
γ

µ γ γ ε

µ γ γ
∆

→∞
∆

∈ + − + − ≥
=

+ − + 

uniformly in γ for every ε>0. In this case, we write 
^

.f mnk mnkS lim X lγ
∞→− =  The set of all γ - uniform statistically 

convergent functions on T will be denoted by 
^

fS γ
 .

Definition 12 Let α be a fractional order, f be a Musielak-orlicz 
function and a triple sequence X:T3→R3 be a Δγ

α- measurable 
function. Then the triple sequence X is an γ- uniform statistical 
Cauchy function on T if there exists a number (m1n1k1) > (m0 
n0k0)∈T such that

0 0 0

, ,
0 0 0

(( ) [ ( ) 1, ( ) ) : (| | ))
lim 0,

([ ( , )) 1 ( ) ]
s ss s s mnk m n k s

m n k

m n k m n k mnk f x l

m n k mnk
α
γ

α
γ

µ γ γ ε

µ γ γ
∆

→∞
∆

∈ + − + − ≥
=

+ − + 

for each ε>0 uniformly in γ. 

Definition 13 Let α be a proper fractional order and 
Ω((m,n,k),γ,λ) be a Δ(λ,γ)

α- measurable subset of T, is defined by 

Ω((m,n ,k) ,γ ,λ )={(m sn sk s)∈[ (mnk)+γ-λ mnk+(m 0n 0k 0) -
1,(mnk)+γ):(msnsks)∈Ω}, for (m,n,k)∈T and it is denoted by 

( ) ( ),λ γ ΩI   as follows:

( ) ( ) ( , )

( , )

m,n,k

,

0 0 0

( (( , , ), , ))

([( ) ( )
li

1, ( ) ] )
m ,x y

x y
mnk

m n k

mnk m n k mnk

α

α

λ γ

∞

µ γ λ

µ γ λ γ→

∆

∆

Ω
Ω

+ − + − +
=



I

 
provided that the above limit exists.

Definition 14 Let α be a fractional order, f be a Musielak-orlicz 
function and a triple sequence X:T3→R3 be a Δ(λγ)

α - measurable 
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function. Then the triple sequence X is (λ,γ)- uniform statisti-
cally convergent to a real number l on T if 

,
0 0 0

, ,
0 0 0

(( ) [( ) ( ) 1, ( ) ) : (| | ))
lim 0,

([( ) ( )) 1, ( ) ]
s ss s s mnk mnk m n k s

m n k
mnk

m n k mnk m n k mnk f x l

mnk m n k mnk
α
γ λ

α
γ

µ γ λ γ ε

µ γ λ γ
∆

→∞
∆

∈ + − + − + − ≥
=

+ − + − + 

 uniformly in γ for every ε>0. In this case, we write 

^

, ,lim .f m n k mnkS X l
λγ

→∞− =  The set of all (λ,γ)- uniform statisti-
cally convergent functions on T will be denoted by 

^

fS
λγ



Main Results

Proposition 3 If f be a Musielak-Orlicz function and two triple 

sequences X,Y:T3→R3 with 
^

1, ,
limf mnkm n k

S X l
λγ

→∞
− =  and 

^

2, ,
limf mnkm n k

S X l
λγ

→∞
− =  then the following statements hold:

^

1 2, ,

^

, ,

( ) lim ( ) ,

( ) lim ( , ) , 1, ( ).

f mnk mnkm n k

f mnkm n k

i S X Y l l

ii S c X c l c

λγ

λγ

→∞

→∞

− + = +

− = ∈



 

Proof. Omitted.

Theorem 1 Let α be a fractional order, f be a Musielak-Orlicz 
function and a triple sequence X:T3→R3 be a Δ(λγ)

α - measurable 
function. Then the triple sequence X is (λ,γ) - uniform statis-
tically convergent on T⇔ the triple sequence Xmnk is a (λ,γ) 
- uniform statistical Cauchy function on T.

Proof. This prove is similar to Theorem 3 of [15].

Theorem 2 Let α be a fractional order and 
,^ ^

S S
γ λ γ

⊂ ⇔ 

0 0 0

, ,
0 0 0

inf ([( ) ( ) 1, ( ) ) )
lim 0.

([ ) 1, ( ) ] )
mnk

m n k

mnk m n k mnk

m n k mnk
α
γ

α
γ

µ γ λ γ

µ γ γ
∆

→∞

∆

+ − + − +
>

+ − +




Proof. For a given ε>0, we have

( )( )
( )( )

0 0 0

0 0 0

[ ] 1, ( ) : (| 1| ))

( ) ( ) 1, ( ) ) : (| 1| ) .

s s s

s s s

s s s mnk m n k

s s s mnk mnk m n k

m n k m n k mnk f X

m n k mnk m n k mnk f X

α
γ

α
γ

µ γ ε

µ γ λ γ ε

∆

∆

∈ − + − ≥ ⊃

∈ + − + − + − ≥





Therefore,

( )( )
( )

0 0 0

1
0 0 0

[ ] 1, ( ) : (| | ))

( ) 1, ( ) )

s s ss s s mnk m n km n k m n k mnk f X l

m n k mnk

α
γ

α
γ

µ γ ε

µ γ γ

∆

−

∆

∈ − + − ≥ ×

+ − +





( ) ( ) ( ) ( ) ( )( )
( )( )

( )( )( )
( )( )

( )( )( )

( , )

( , )

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

( , )

1, : | | )

( ) 1, ( )

( ) 1, ( )

( ) 1, ( )

1
( ) 1, ( )

((

s s ss s s mnk mnk m n k

mnk

mnk

m n k mnk m n k mnk f X l

m n k mnk

mnk m n k mnk

m n k mnk

mnk m n k mnk

λ γ

α
γ

λ γ

α
γ

α
γ

α
λ γ

µ α γ λ γ ε

µ γ γ

µ α γ λ γ

µ γ γ

µ γ λ γ

µ

∆

∆

∆

∆

∆

∈ + − + − + − ≥  
≥

+ − +

+ − + − +
= ×

+ − +

+ − + − +

∆











0 0 0) ( ) ( ) 1, ( ) ) : (| |) ))s s s mnk mnk s s sm n k mnk m n k mnk f Xm n k lγ λ γ ε∈ + − + − + − ≥

Hence by using (6.1) and taking the limit as m,n,k→∞, we get

( )
( )

( )
( ),

.
s s s s s s

s

m n k m n kX l X l s

γ

λ γ
 
 
 
 

 
→ ⇒ →  

 









Definition 15 Let α be a fractional order and a triple sequence 
X:T3→R3 be a Δα - measurable function and 0<p<∞, then X 
is strongly p- ces`aro summable on T if there exists some l∈R 
such that

0 0 0[( )( ) ], ,
0 0 0

1lim
([( ), ( ) ])

(| | ( )) 0.

m n k mnkm n k

p
mnk s s s s s s

m n k mnk
f xm n k l xm n k

α

α

µ→∞
∆

− ∆ =

∫ 
 �

 

The set of all p - cesàro summable functions on T will be de-
noted by [Wp]T

f. 

Definition 16 Let α be a fractional order and a triple sequence 
X:T3→R3 be a Δ(λ,γ)

α- measurable function and 0<p<∞, X is said 
to be (λ,γ) uniformly strongly p- summable on T if there exists 
some l∈R such that

, ,
( , ) 0 0 0

1lim
([( ) ( ) 1, (( ) ) ])m n k mnk mnk m n k mnkα

λ γµ γ λ γ→∞
∆ + − + − +  �

[( ) ( 0 0 0) 1,(( ) ) ] (| 1| ( )) 0.
s s s s s s

p
mnk mnk m n k mnk mnk m n k m n kf x xγ λ γ α+ − + − + − ∆ =∫ 

In this case, we can write lim .
s s s

f

p m n kW X lγ
  − =  




 

The set all (λ,γ) uniformly strongly p- summable function on T 

will be denoted by 
f

pW γ
 
  





.

Lemma 1 Let α be a fractional order and a triple sequence 
X:T3→R3 be a Δ(λ,γ)

α - measurable function and

Ω((m,n ,k) ,γ ,λ )={(m sn sk s)∈[ (mnk)+γ-λ mnk+(m 0n 0k 0) -
1,(mnk)+γ)_T:(msnsks)∈Ω},

for ε>0. In this case, we have

( , )

0 0 0

(( , , ), , )

[( ) ( ) 1,(( ) ) ]

1( (( , , ), , )) (| 1| ( )

1 (|| 1| ( )).

s s s s s s

mnk s s s s s s

m n k mnk m n k m n k

mnk m n k mnk mnk m n k m n k

m n k f x x

f x x

λ γ

α α
γ λ

α
γ λ γ

µ γ λ
ε

ε

∆ Ω

+ − + − +

Ω ≤ − ∆

− ∆

∫

∫ 

Proof. This can be proved by similar in [16].

Theorem 3 Let α be a fractional order and a triple sequence 
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X:T3→R3 be a Δ(λ,γ)
α- measurable function, l∈R and 0<p<∞, 

then the following statements are equivalent.

(i) 
^^
( , )[ ] f f

pW S λ γ
γ ⊂ 

(ii) If a triple sequence X is (λ,γ) uniformly strongly p- summa-
ble to l, then

(iii) 
( , )^

lim 1.
f

mnk mnkS X
λ γ

→∞− =  

and a triple sequence X is a bounded function, then the triple 
sequence X is uniformly strongly p- summable to l.

Proof (i) Let ε>0 and [Ŵγp ]T
f - limmnk→∞ Xmnk = l. We can write

0 0 0[( ) ( ) 1,(( ) ) ]

(( , , ), , )

(| 1| ( ))

(| 1| ( ))

( (( , , ), , )).

mnk s s s s s s

s s s s s s

p
mnk m n k mnk mnk m n k m n k

p
m n k mnk m n k m n k

p

f x x

f x x

m n k

α
γ λ γ

α
γ λ

α
γε γ λ

+ − + − +

Ω

− ∆ ≥

− ∆ ≥

∆ Ω

∫
∫
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(ii) Let a triple sequence X be (λ,γ)- uniformly strongly p- sum-
mable to l. For given ε>0, let
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on time scale T. Then, it follows from Lemma 1 that
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Dividing both sides of the last inequality by
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and taking limit as m,n,k→∞, we get
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which yields 
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(iii) Let a triple sequence X be bounded and statistically con-
vergent to l on T then, there exists a positive number M such 

that ( )
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where Ω((m,n,k),γ,λ) is as before. Since
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We obtain
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(6.3)

Since ε is abitrary, the proof follows from (6.2) and (6.3). 

Theorem 4 Let α be a fractional order and X be a triple se-
quence of Δγ

α - measurable function. Then 

( , )^
lim 1

s s s

f

mnk m n kS X
λ γ

α
γ→∞− = ⇔ ∆ −  

measurable set Ω⊂T such that ( )ã 1Ω =I  and limmnk Xmnk = l,    
(m,n,k)∈Ω((m,n,k),γ,λ).

Proof. It is similar way of Theorem 3.9 in [16].

Conclusion

In this study, introduced the triple sequence of statistical con-
vergence, the concepts of γ and (λ,γ)- uniform density and uni-
form statistical convergence were defined on an arbitrary time 
scale. Defined γ- uniform Cauchy functions on a time scale also 
obtained some relations between these spaces.
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