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There are very few definite clustering algorithms despite the increasing 
demand for cluster analysis of categorical data. The significance of data 
clustering to perform data analysis has progressively gained prominence 
over the last few years. Notably, the clustering algorithms are used to 
group all the comparable items into clusters using the similarity measure 
[1]. According to Aggarwal, Charu, Cecilia Procopiuc, and Philip there 
are clear differences between the clustering techniques for numerical and 
categorical data particularly with regards to providing the definition of the 
similarity measure [2]. With regards to the numerical clustering techniques, 
they delineate the similarity measure by using the distance function such as 
the Euclidean distance. Alternatively, it has been proven that between the 
categorical values, there is no integral distance meaning [3]. Customarily, 
data preprocessing phase is usually used to merge the numerical and 
categorical data clustering whereby a domain-based knowledge is used 
to define conceptual similarity between data or the categorical data are 
manipulated to construct or extract the numerical features [4]. Nonetheless, 
given the little experience about the data the initial stages of the analysis 
process it is difficult to extract any meaningful conceptual similarity or 
numerical features [5]. Furthermore, it has been extensively recognized 
that most applications require direct clustering of the raw categorical data, 
for instance, the network intrusion analysis, protein or DNA sequence 
analysis, market basket data analysis, and environmental data analysis.

Cluster validation methods need to be adopted to assess the quality of the 
clustering outcomes since the diverse clustering algorithms rarely produce 
similar results for a single dataset [6]. Officially, cluster validation is faced

by two major concerns first, how to establish the numbers of clusters 
(the “best K”) which specify the essential clustering structures of the 
dataset [7]. Secondly, while considering the fixed K number of clusters, 
it is concerned with how to assess the quality of varied partition schemes 
being produced by the diverse clustering algorithms for some dataset [8].

With regards to the numerical data, the clusters’ density and geometry are 
mostly used to validate the clustering structure. The density-based methods 
are naturally applied into the clustering when the distance function is 
provided for the numerical data [9].  Therefore, the density concepts and 
the distance functions are critical with regards to ensuring the numerical 
clustering results are validated [10]. The different visualization-based 
and statistical cluster validation methods which are based on the density 
property and geometry have been recommended for numerical data. The 
effectiveness of such cluster validation methods is enhanced by the density 
distribution and geometry [11]. An excellent example frequently observed 
in clustering literature includes the assessment of the clustering results 
of the 2-Dimensional (2D) experimental dataset through visualization. It 
involves using cluster visualization to test and validate how the clustering 
results equal the density distribution and geometry of the points [12].

Despite the categorical data lacking the distance meaning, the tactics utilized 
in cluster validation for numerical data cannot be applied for categorical 
data. The general distance functions are mostly non-spontaneous and 
irrelevant, due to the absence of practical numerical feature construction/
extraction for a particular categorical dataset [13]. The methods have 
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failed to adequately tackle the main issue related to categorical clustering, 
that manipulates the categorical dataset to establish the best K number of 
clusters. The traditional cluster validation methods which are based on 
the density distribution and geometry shape cannot be used to answer the 
question as the categorical data lacks the inherent distance function [14].

The researchers sought to explore entropy property of the categorical data 
then recommend a BkPlot technique that can help to determine “best Ks” as 
a set of the candidate [15]. Furthermore, a hierarchical clustering algorithm 
is used to get experimental results which prove the method known as 
HierEntro can successfully obtain the significant clustering structures [16]. 
Available studies regarding categorical clustering have largely focused on 
adding knowledge on algorithms only. In this case, the researchers sought 
to identify the best Ks for categorical data clustering by developing an 
entropy-based cluster validation method. The experimental outcomes 
indicate that the strategy taken can successfully establish significant 

clustering structures [17]. The method proposes analyzing the “Entropy 
Characteristic Graph (ECG)” to establish the best Ks. Besides, the Entropy 
Characteristic Graph (ECG) can be used to characterize the clustering 
structure of categorical data [18]. Additionally, the significant points located 
on the ECG can be conveniently be found using the Best-K plot (BkPlot) 
[19]. Diverse algorithms usually produce the BkPlot but they may perform 
differently with regards to identifying the significant clustering structures. 
It is evident that the HierEntro which is an entropy-based agglomerative 
hierarchical algorithm is used to get a comprehensive BkPlot for experimental 
data sets in comparison to other types of entropy-based algorithms namely 
the Cool cat and Monte-Carlo algorithm [20]. Furthermore, high clustering 
results in relation to entropy criterion can also be obtained using the 
HierEntro. Consequently, with regards to categorical datasets, it is evident 
that combining HierEntro algorithm and the BkPlot validation method to 
analyze their significant clustering structures [21].

Figure 1: Different BkPlots based on various clustering methods [15].
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