
www.enlivenarchive.org

all the genes in the training dataset with the highest score [13]. Then, the 
researchers used a superior classifier like the RVM classifier and SVM to test 
all the gene combinations. The Support Vector Machines (SVMs) usually 
optimizes the margin between two datasets by creating a dividing hyper 
plane in the space [14-15]. Besides, they typically perform excellently in 
tasks which involve pattern recognition since they are regarded as linear 
classifiers with the ability to detect the optimal hyper plane that optimizes 
the margins that exist between patterns [16]. Furthermore, the support vector 
machines are widely applied to perform analysis of gene expression data 
[17]. In this case, the researchers used several support vector machines that 
contained essential kernel functions. Additionally, the scholars conducted 
five-fold cross-validation (CV) to adjust the parameters of the support 
vector machine as provided in the training data [18]. The research also 
entails the cross-validation precision for entire sets of data and chooses 
the minor CV error. The figure 1 below indicates the CV process [19].

The researchers unsystematically divide the data set into two namely the 
training and testing (F1 and F2 respectively); besides, the samples of the 
training data are relied on to rank the genes [20]. Then two genes among 
the twenty are used to produce a combination labeled (FC1) which is then 
arbitrarily clustered into five groups from fc1 to fc5 [21]. Subsequently, 
the researchers chose a single group which is then tested. The remaining 
four groups are utilized as support vector classifiers. Additionally, the 
continued to produce combination to a point at which superior precision 
is obtained [22]. Lastly, they carried the drug prediction using the fitted 
support vector machine. The study proved that both the SVM is a highly 
effective classifier while the CV and the Analysis of Variance (ANOVA) are 
incredibly important ranking schemes with particularly when used to find 
the smallest subsets if gene to make precise classification of cancer [23]. 
The newly proposed technique subdues the main drawback related to the 
SVM technique. The application of the Relevance Vector Machine is usually 
minimal in comparison to the use of the support vector machine given its 
high or more significant number of vectors [24]. The researcher did the 
experiments for the suggested method by utilizing a lymphoma dataset; also, 
they relied on the K-means method for conducting clustering of the twenty 
chosen genes [25]. The findings from the experiment reveal that the use of 
the Relevance Vector Machine classifier can significantly assist in performing 
accurate cancer classification as compared to other traditional techniques.

The researchers sought to use to supervised machine learning algorithms 
to determine the minor set of genes that can provide exact cancer from 
the microarray data [1]. The importance of getting the minimum subset 
significantly stimulate the need for additional studies on the likely biological 
relationship that between the small number of genes together with the onset 
of cancer and drug development; it helps to considerably reduce the cost 
incurred in testing cancer since it streamlines the gene expression tests to 
cover a minimal amount of genes [2-3]. In addition, a minimal subset helps 
reduce noise arising from extraneous genes and the associated computational 
problem [4]. The researchers have suggested a method that includes two 
major steps such as using the Analysis of Variance (ANOVA) ranking 
scheme to select the most significant genes and a superior classifier was 
used to determine all the modest combinations of the main genes [5]. The 
researchers used both the Relevance Vector Machine (RVM) classifier and 
the Support Vector Machine (SVM) to increases the accuracy of cancer genes 
classification and the drug prediction [6]. The findings of the experiment prove 
that the suggested method performs excellently or it achieves accurate cancer 
classification in comparison to the common conventional techniques [7].

According to the article, researchers are successful applying the micro 
array data analysis in many biological areas such as determining the 
pertinent genes which helpful in making cancer diagnosis and prognosis 
as well as assist in development of therapies or drugs [8]. Besides, the 
analysis is applied in identifying the unidentified impacts of a certain cancer 
therapy and making cancer classification by prediction and classification 
[9]. Despite applying the techniques such as the Generalized Singular 
Value Decomposition (GSVD), Singular Value Decomposition (SVD), 
Principal Component Analysis (PCA), and the Support Vector Machines 
(SVMs), researchers always find some missing values which can be 
regarded as a critical preprocessing step [10]. During gene expression, 
data is lost owing to errors during experiments in the lab, slides which 
contain scratches or dirt, image corruption, and insufficient resolution [11].

In the study, the researchers propose a useful technique that combines 
Relevance Vector Machine classifier and the Support Vector Machine to 
accurately perform classification of cancer by utilizing a combination 
of two gene expression in lymphoma dataset [12]. The two-step cancer 
classification involves the use of a scoring scheme to rank and retain 
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