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Abstract
Prostate cancer is the most commonly diagnosed cancer in men. Although the cancers are initially androgen sensitive and respond to anti-hormonal 
therapy, over time they become refractory and grow in the absence of androgen. Such cancers, termed castrate resistant prostate cancer (CRPC), are 
aggressive in nature and have limited treatment options. Apart from androgens, estrogens also contribute to the initiation and progression of prostate 
cancer. Although estrogens are important for the normal development of the prostate gland, the estrogen receptors (ER) α and β are differentially expressed 
in tumors and thus offer a therapeutic target for the treatment of advanced, metastatic prostate cancer. Selective estrogen receptor modulators (SERMS) 
are a group of compounds that bind to ER and exert tissue specific agonist or antagonistic effects. Raloxifene, a SERM, approved for the treatment of 
osteoporosis in post-menopausal women, exhibits potent anti-cancer activity in in vitro and in vivo models of CRPC. However, poor bioavailability, 
extensive metabolism, and poor water solubility have reduced its efficacy in animal studies and clinical trials. With recent advances in nanotechnology, 
raloxifene has been successfully encapsulated in nanoparticles and exhibits superior pharmacokinetics than the free drug. Thus, this review has focused on 
the anti-cancer activity of raloxifene against CRPC, problems associated with the drug, results of clinical trials, and ways to improve raloxifene’s efficacy.

Role of Estrogen and Estrogen Receptors in the Normal Prostate
Although the development, differentiation, and functioning of the prostate gland are primarily mediated by androgen, estrogens also exerts profound 
direct and indirect effects on the prostate. The natural role of estrogens during prostatic development is uncertain, but excessive estrogenization during 
prostatic development can lead to benign prostatic hyperplasia (BPH) as well as prostate cancer in older males [1,2]. Investigating key developmental 
prostatic genes also showed that early exposure to high levels of estrogens initiated permanent structural and functional alterations to the prostate gland 
[3]. Estrogens can also have direct effects on the prostate gland in adults. It has been proposed that the growth of the stroma of the human prostate may 
be at least partly stimulated by estrogens which subsequently lead to an increase of 5α-reductase activity [4]. However, the above process results in an 
accumulation of dihydroxytestosterone (DHT), which in turn could over stimulate the growth of the epithelium. And the estradiol: DHT ratio increases 
massively within BPH tissue which directly implicates estradiol in the disease process [4]. The most important routes of indirect estrogen regulation are 
interference of androgen production by repression of the hypothalamic–pituitary–gonadal axis and direct effects on testis. One of the indirect mediators 
of estrogen effects on the prostate gland is stimulation of prolactin release form the pituitary and some, but not all, of estrogen’s effects have been 
attributed to direct prolactin action on the prostate [5,6]. In addition, estrogens exert indirect effects on the inhibition of androgen production by negative 
feedback on the hypothalamic-hypophyseal-testicular axis, blocking lutinizing hormone secretion and testicular steroidogenesis of androgens [7]. Most 
of estrogen’s action in the prostate gland is mediated through two estrogen receptor (ER) subtypes ERα, expressed primarily in stromal cells, and ERβ, 
preferentially localized in the epithelium [8]. Both ERs are members of a large superfamily of proteins that function as ligand-activated transcription 
factors [9,10]. Due to their individual characteristics, ERα and ERβ have distinct biological functions. ERα was proposed to play a tumor suppressor role 
in the prostate gland and loss of its expression may be an early event in prostatic disease [11,12]. It has also been suggested that the action of ERα is not 
necessary for normal growth and function of the prostate gland [13,14]. However, it was observed that ERβ plays a central role in estrogen/antiestrogen 
signaling in normal and malignant human prostate endothelial cells [15]. Furthermore, ERβ has been proposed to have an anti-oxidant function and play 
an immunomodulatory role in the prostate gland [7].
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Roles of ER in Prostate Cancer

While there is increasing evidence that ERs play a significant role in the 
growth and development of prostate cancer, its expression and function still 
remains controversial [16-22]. For example, the function of stromal ERα, 
remains largely unknown. Earlier studies suggested a possible role of ERα 
in promoting inflammation, proliferation, and metastasis [23,24]. However, 
another study has indicated that ERα in cancer associated fibroblasts (CAF) 
could promote prostate cancer cell proliferation and cell colony formation 
[25]. However, in a recent study of in vitro invasion assays and in vivo mouse 
models, it was observed that ERα could inhibit prostate cancer metastasis 
[18]. More recently, in vitro and in vivo studies on the role of stromal ERα in 
the later stages of prostate cancer progression showed that ERα in CAF was 
able to suppress prostate cancer cell invasion in the tumor microenvironment 
[19]. Due to this suppressing role, ERα levels in CAF was proposed to 
be utilized as a prognostic marker to predict cancer progression [19].

In comparison to ERα, the role of ERβ in prostate cancer is well studied. 
ERβ is considered to be a tumor suppressor in prostate cancer, which makes 
it a promising drug target for the treatment and prevention of prostate cancer 
[26,27]. The anti-proliferative and pro-apoptotic role of ERβ in prostate 
cancer has been reported in both ERβ-knockout mice as well as human 
prostate tumors [28-30].  Additionally, 17β-estradiol and the ERβ-selective 
agonist diarylpropionitrile (DPN), but not the ERα-selective agonist propyl 
pyrazole triol (PPT), increased the incorporation of [3H]-thymidine and the 
expression of cyclin D2 in PC-3 prostate cancer cells, suggesting that ERβ 
mediates this proliferative effect [31]. It was also observed that ERβ also 
could cause apoptosis in Gleason grade 7 xenografted tissues as well as 
in androgen-independent PC-3 and DU-145 cell lines via caspase-8 [32]. 
Furthermore, with the identification of various isoforms of ERβ, different 
functions of ERβ in prostate carcinogenesis have been proposed. ERβ 
isoforms include ERβ2 to ERβ5 in which the most studied splice variants 
are ERβ2 and ERβ5. In one study, it was found that ERβ2 could increase 
prostate cancer cell invasion, while ERβ5 enhanced both cell migration 
and invasion [21]. In another study, however, evidence suggested ERβ2 
was able to promote cancer cell migration and invasion in addition to cell 
proliferation, subsequently inducing the expression of factors involved in 
bone metastasis [16]. Thus, there is plenty of experimental evidence to 
suggest that targeting the ER is a viable therapeutic option in prostate cancer.

Castrate Resistant Prostate Cancer

Prostate cancer accounts for the largest number of diagnosed non-skin 
cancers in males and is the second leading cause of death amongst men in 
the United States [33]. A routinely used screening test for the detection of 
prostate cancer involves the measurement of serum levels of prostate specific 
antigen (PSA), where values greater than 2.5 ng/ml are considered positive 
for prostate cancer [34]. The common treatment for prostate cancer involves 
reduction of serum testosterone levels to <50 ng/dl via chemical or surgical 
castration [35]. Chemical castration often involves the use of androgen 
deprivation therapy medications such as gonadotrophin-releasing hormone 
(GnRH) agonists such as leuprolide, GnRH antagonists such as abarelix, 
adrenal ablating drugs such as ketoconazole, androgen receptor (AR) 
antagonists such as flutamide, and 5α-reductase inhibitors such as finasteride 
[36, 37]. While, most of the patients diagnosed with non-metastatic prostate 
cancer respond to initial treatments, the cancer can relapse into a form that 
does not respond to such treatments, producing distant metastasis [38,39]. 

The most common sites of prostate cancer metastases are bone, liver, lymph 
node, lungs, soft tissue, dura, and adrenal glands [40,41]. This aggressive 
and metastatic form of the disease is termed castrate resistant prostate cancer 
(CRPC) because the cancer cells grow in absence of androgen. Instead, 
there are various stimulatory signals that dominate such as tyrosine kinase 
receptors that are activated even when the level of circulating androgens are 
low [42].

For CRPC, the treatment options become limited and include the 
administration of narcotic analgesics, radiotherapy, cytotoxic chemotherapy, 
and use of palliative medications such as prednisone or hydrocortisone 
[43]. Although androgen deprivation therapy is useful in the management 
of advanced prostate cancer, it nonetheless has many side effects such as 
osteoporosis, sexual dysfunction, hot flashes, cardiovascular risk, and 
metabolic alterations [37,44]. Moreover, this form of advanced prostate 
cancer has poor survival rates, although recent studies have reported 
improvements over the international guideline estimate of ≤ 19 months 
[45,46]. Hence, there is a need for the development of safe and efficacious 
therapies without side effects for the treatment of CRPC.

Initially, docetaxel with prednisone was the common treatment strategy 
for patients with CRPC [43]. However, a number of drugs have been 
recently approved by the FDA for the treatment of CRPC, which includes 
enzalutamide (an androgen receptor inhibitor), abiraterone acetate (an 
androgen biosynthesis inhibitor), cabazitaxel (a microtubule inhibitor), 
sipuleucel-T (autologous cellular immunotherapy) [47], and radium 223 
dichloride (an alpha-particle emitting radiotherapeutic drug) [48]. A number 
of studies reported the contribution of estrogen and estrogen signaling and 
androgen together with estrogen in the development of prostate cancer [49-
53]. Moreover, it was reported that ER α was overexpressed in hormone 
refractory tumors and metastatic lesions in secondary sites such as lymph 
node and bone [54]. Thus, these studies provide a rationale to target the ER 
and its signaling in CRPC.

Selective Estrogen Receptor Modulators (SERMs)

Selective estrogen receptor modulators (SERMs) are compounds that 
are able to bind to ERs in target organs and act as agonists or antagonists 
depending on the tissue. For example, they are often agonists in bone, 
liver, and the cardiovascular system, antagonists in brain and breast, and 
mixed agonists/antagonists in the uterus [55]. More than seventy different 
SERMs have been reviewed and they were subsequently classified into 5 
different groups according to their chemical structure: triphenylethylenes, 
benzotiophenes, tetrahydronaphtylenes, indoles and benzopyrans [56-58]. 
The triphenylenes are planar, structurally rigid compounds which exist in 
either a cis- or trans- conformation. Benzotiophenes, such as, raloxifene 
contain a flexible carbonyl ‘hinge’ between the basic amine containing 
side chain and the olefin [59].  FDA approved SERMs include tamoxifen 
(Nolvadex), raloxifene (Evista) and toremifene (Fareston) (Figure 1).
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Tamoxifen

Tamoxifen, a triphenylethylene derivative, acts as an ER antagonist in 
mammary tissue, but as an ER agonist in cholesterol metabolism, bone 
density regulation, and cell proliferation in the endometrium [60]. Tamoxifen 
is a first-generation SERM which has been used effectively for 40 years in 
the treatment of (ER)-positive breast cancer and for the prevention of breast 
cancer in high-risk women [61,62]. Tamoxifen has also been proposed as 
a treatment to prevent gynecomastia and/or breast pain, which is a very 
common side effect in men receiving antiandrogen/hormonal therapy for 
prostate cancer [63-66]. In general, gynecomastia results from an increase in 
the effective ratio of estrogens to androgens in breast tissue [67]. Up to 70% 
of patients receiving antiandrogen/hormonal therapy for prostate cancer 
have been reported to exhibit these side effects [64,65]. The side effects can 
have a strong negative impact on patient’s quality of life by causing physical 
pain and emotional discomfort, and are the major reasons for patients 
withdrawing from therapy [64,68,69].

Raloxifene

Raloxifene belongs to the benzothiophene group containing compounds 
and has been approved by the FDA for the treatment and prevention of 
postmenopausal osteoporosis as well as for the reduction in the risk of 
invasive breast cancer in postmenopausal women. Being an estrogen agonist 
in the skeletal and cardiovascular system, raloxifene is able to increase bone 
mineral density and decrease low-density lipoproteins. Raloxifene can also 
act as an antagonist on ERs in the breast and uterus to decrease the risk of 
cancer. Raloxifene is also under investigation for other potential indications, 
such as the primary and secondary prevention of cardiovascular disease in 
postmenopausal women and in breast cancer prevention in high-risk women 
[70,71]. Raloxifene binds to the ER with a similar Kd as 17β-estradiol (~50 
pmol/l) [72]. Raloxifene exhibits rapid absorption and poor bioavailability 
as only 2% of an oral dose reaches the systemic circulation [73]. Raloxifene 
distributes extensively in the body, mainly to the liver, serum, lungs and 
kidneys [73] with an apparent volume of distribution of 2348 l/kg after 
a single oral dose (30 to 150 mg) [74]. Its low bioavailability results 
from extensive first-pass metabolism catalyzed by UDP-glucuronosyl-
transferases (UGT) to form raloxifene-4’-glucuronide or raloxifene-6-
glucuronide metabolites [75,76]. The majority of a dose of raloxifene is 
excreted primarily in the feces with less than 6% found in the urine [74].

In Vitro Effects of Raloxifene Against Prostate Cancer

Raloxifene has elicited cytotoxicity towards a variety of cancer cell lines 
including prostate cancer [77-82]. Compared to tamoxifen, raloxifene

exhibited a higher affinity towards ERβ in U2OS bone cancer cells, MCF-
7 breast cancer cells, Ishikawa endometrial cells, HeLa cells, and WAR-5 
prostate cancer cells [83]. However, raloxifene also mediates its anti-cancer 
effect irrespective of AR status, and is effective in both androgen-sensitive 
and androgen-independent prostate cancer cells. Treatment of androgen-
sensitive LNCaP and androgen-independent prostate cancer cell lines PC3, 
PC3M (ERα+/ERβ+) and DU145 (ERβ+) with raloxifene elicited significant 
cytotoxicity via the induction of apoptosis [84]. Piccolella et al., demonstrated 
that the anti-cancer effect of SERMs such as raloxifene was mediated via 
ERβ, in DU145 and PC3 cells that lack ERα. The aim of the study was 
to investigate if SERMs such as raloxifene and tamoxifen could mimic the 
anti-proliferative activity of a locally synthesized testosterone metabolite 
5α-androstane-3β, 17β-diol (3β-adiol), which primarily exerted its effect via 
ERβ.  Raloxifene and tamoxifen treatment (1 µM) for 48 h significantly 
decreased cell proliferation, migration and adhesion. Importantly, the above-
mentioned effects were abolished in the presence of an ER antagonist ICI 
182,780, which indicates that the effects of raloxifene were mediated via 
the ER [85]. Further studies have demonstrated that the anti-cancer effect 
of raloxifene was cell type-specific and also ERα/ERβ level-dependent. For 
example, in the androgen-dependent cell line EPN which expresses both 
ERα and ERβ, treatment with raloxifene caused cell cycle arrest in the G0/
G1 phase, and apoptosis was induced as evidenced by increased expression 
of pro-apoptotic proteins caspase-3, Par-4 and downregulation of anti-
apoptotic protein bcl-2. Cell proliferation in these cells was significantly 
reduced due to downregulation of c-myc and p27 mRNA expression [86]. 
Moreover, the expression of metallothionein II, an ERβ regulated gene, 
increased significantly after raloxifene treatment, indicating the ERβ-
dependent role for raloxifene. On the contrary, in a stabilized epithelial cell 
line derived from a prostate cancer specimen (CPEC) that lacked ERα and 
expressed low levels of ERβ, only a weak apoptotic signal was observed 
[86].

These results therefore demonstrate that the anti-cancer activity of raloxifene 
in prostate cancer cells is mainly due to induction of apoptosis, cell cycle 
arrest, and decreased cell proliferation. However, the effect of raloxifene 
on the expression of AR remains ambiguous and also it was reported that 
raloxifene at high doses favored cell proliferation by mimicking the activity 
of androgens in a CPEC primary prostate cancer cell line expressing low 
level of ERβ and lacking ERα [86]. Hence, future studies should investigate 
the mechanism behind pro-androgenic effect of raloxifene at high doses, the 
effect of raloxifene in combination with other drugs, and also investigate 
the synthesis of analogs to further enhance the cytotoxicity of raloxifene 
towards CRPC.

In Vivo Effects of Raloxifene Against Prostate Cancer

Only a limited number of studies have investigated the anti-tumor effect 
of raloxifene in animal models. For example, Neubauer et al., investigated 
the anti-metastatic effect and overall survival in male Lobund-Wistar 
rats bearing the PAIII rat adenocarcinoma in the tail. Dosing of rats 
subcutaneously with raloxifene (20 mg/kg/day) for 30 days did not regress 
the primary tumor but it significantly decreased metastasis from the tail to 
gluteal lymph nodes (89%) and the lung (97%) [87]. Furthermore, PAIII 
rats that were dosed with raloxifene (40 mg/kg for 28 days) daily, exhibited 
significant increase in survival, compared to control. Raloxifene treatment 
also elicited a dose-dependent decrease (20%) in the ventral prostatic weight 
and 21% decrease in seminal vesical weight, and this was associated with a

Figure 1: FDA approved SERMs include tamoxifen (Nolvadex), 
raloxifene (Evista) and toremifene (Fareston)



Enliven Archive | www.enlivenarchive.org

	
	
2017 | Volume 4 | Issue 14

decrease in serum testosterone levels. An important finding from the study 
was that raloxifene mediated its anti-metastatic effect independent of the 
estrogen receptor as co-administration of estradiol benzoate (E2B) did 
not antagonize the effects of raloxifene, and the anti-metastatic activity of 
raloxifene did not involve any pharmacological interaction of raloxifene with 
E2B [87]. Lower doses of raloxifene have also shown tumor and metastasis 
suppression in an orthotopic model of CRPC. Specifically, raloxifene, 
when given orally (8.5 mg/kg/d, 42d) to male mice bearing PC3 tumors in 
their prostate, decreased tumor volume 70% and metastasis to renal lymph 
nodes 60% compared to vehicle control [88]. Interestingly, these results 
correlated with a 300% increase in the number of apoptotic cells in the 
tumor as well as an 84% decrease in ERα and a 92% decrease in ERβ as 
shown by immunohistochemistry of tumor slices. Thus, it has been shown 
that raloxifene administered orally can decrease metastasis in an orthotopic 
model. Decreasing metastasis is a critical drug action since it is metastasis, 
not the primary tumor that is responsible for the poor CRPC survival rate.

Raloxifene has also shown efficacy in transgenic mouse models. For 
example, Zeng et al., used a probasin/SV40 T antigen (Tag) transgenic 
mouse model, where mice develop adenocarcinoma of the prostate at the 
15th week of age, to investigate the chemopreventive efficacy of raloxifene 
and nimesulide, a COX-2 inhibtor. The rats dosed with raloxifene (10 mg/
kg/day) and nimesulide (400 ppm) exhibited a significant reduction in 
ventral prostatic weight. There was also a significant decrease in circulating 
testosterone levels in the group that received nimesulide plus raloxifene 
(10 mg/kg/d). Nimesulide on its own was ineffective in this model and 
the effects observed were due to the action of raloxifene. The rats dosed 
with raloxifene alone (5 mg/kg/d) or combined with nimesulide (400 
ppm + 5 mg/kg/d or 10 mg/kg/d of raloxifene) exhibited downregulated 
androgen receptor levels in the ventral prostate. Moreover, raloxifene 
treatment at 10 mg/kg/d along with nimesulide significantly decreased cell 
proliferation as evidenced by decrease in the expression of proliferating cell 
nuclear antigen (PCAN) [89]. Investigation into the efficacy of raloxifene 
in androgen-dependent CWR22 and androgen-independent CWRSA9 
prostate cancer xenograft models that express only ERβ, demonstrated 
that raloxifene elicited significant growth inhibition of tumors (64% 
for CWRSA9 and 68% for CWR22), although tumor regression was not 
observed. Raloxifene elicited its effect primarily by cell cycle arrest, as 
evidenced by the enhanced expression of G1 phase inhibitor, p27kip1[90].

Clinical Trials

Raloxifene has demonstrated promising results in the clinical trials. For 
example, a Phase II clinical study recruited 21 androgen-insensitive 
prostate cancer patients exhibiting disease progression after hormonal 
therapy. Patients were administered 60 mg oral raloxifene daily in 28 day 
cycles. 5 patients exhibited disease stabilization at the end of first cycle 
but only one patient stayed on the trial for 17 cycles [90]. Those removed 
were withdrawn due to increasing PSA levels, while two patients reported 
grade 3 toxicity. Raloxifene treatment also caused disease stabilization in 
pre-treated patients who exhibited disease progression prior to raloxifene 
treatment [90]. Raloxifene was also effective in inhibiting gonadotropin-
releasing hormone (GnRH) agonist-induced bone loss in men with non-
metastatic prostate cancer. 48 such patients who were already on a GnRH 
agonist for a minimum of 6 months were randomized and administered 
oral raloxifene at 60 mg/d for 12 months. Only 41 patients completed the 
study and an increase in bone mineral density of the hip was reported [91]. 

However, a phase II combination study involving the use of bicalutamide (50 
mg) and raloxifene (60 mg) in 18 pre-treated men with progressive CRPC, 
for 6 cycles (28 days/cycle) demonstrated that raloxifene was safe without 
any grade 3 or 4 toxicity. In contrast, the combinatorial treatment did not 
elicit any significant clinical response [92]. It can be observed that although 
raloxifene was well tolerated and devoid of major toxicity, it elicited only 
limited clinical response in prostate cancer patients. However, future 
studies using raloxifene analogs or nanoformulation of raloxifene could be 
a strategy for identifying a drug formulation that has improved efficacy.

Raloxifene Analogs

Recent research has focussed on the development of synthetic raloxifene 
analogs in order to produce compounds that are more potent than raloxifene 
in their ability to antagonize ERα in a range of cancer cells. Though these 
analogs have not yet been tested in prostate cancer models, their improved 
efficacy and ER affinity make them ideal candidates for future studies in 
prostate cancer. For example, Shoda et al., synthesized novel raloxifene 
derivatives that acted as selective estrogen receptor destroyers (SERD), by 
acting as an inhibitor of ligand binding and destruction of the ER. The SERD 
activity of the derivatives was dependent on the length of the alkyl chains, 
and RC10, the most potent derivative, contained a decyl group on the amine 
moiety of raloxifene. RC10 exhibited ERα antagonistic activity via its 
proteosomal degradation in breast cancer cells and was superior to compound 
18, an ER antagonist without SERD activity [93]. Other studies with Y134, 
a raloxifene analog with a piperazine side chain, showed that it was more 
potent than raloxifene as an ERα antagonist in CV-1 monkey kidney fibroblast 
cells co-transfected with ERα and ERβ [94]. Furthermore, it also inhibited 
estrogen-dependent proliferation of MCF-7 and T47D breast cancer cells.

Since there are studies that suggest selenium supplementation might protect 
against different cancers [95], selenium analogs of raloxifene have been 
synthesized. Results showed that the introduction of selenium remarkably 
increased the anti-proliferative activity [96]. The selenium analogs also 
exhibited less toxicity, compared to raloxifene. Substitution of hydroxyl 
groups with fluoro groups enhanced the cytotoxic profile of the selenium 
analogs. For example, the selenium analog 6a was cytotoxic towards a 
variety of cancer cell lines and also suppressed tumor growth 30% in a 
4T1 breast cancer model when administered at 15 mg/kg. Interestingly, 
raloxifene was ineffective and was unable to inhibit tumor growth [96].  
Other analogs synthesized include; organometallic analogs, radiolabeled 
analogs, constrained analogs that involved the use of tetracyclic coumarins, 
and thiacoumestans as scaffolds, as well as oxygen-, sulfur- and nitrogen-
based analogs [97]. Thus, these results indicate that raloxifene analogs 
are promising drug candidates and are worthy of investigation in prostate 
cancer models.

Nanotechnology to Improve the Pharmacokinetics of 
Raloxifene

Although raloxifene is a promising drug candidate for the treatment of 
prostate cancer, it exhibits limited efficacy in in vivo models and clinical trials 
due to rapid absorption and pre-systemic clearance [73]. Nanoformulations 
of raloxifene have exhibited high loading capacity, reduced clearance and 
enhanced bioavailability. For example, poly (ε-caprolactone) nanocapsules 
of raloxifene had an encapsulation efficiency of >80%, a 2.1-fold increase 
in bioavailability, and sustained drug release when compared to the free 
drug [34]. Moreover, encapsulation of raloxifene in nanoparticles avoided 
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first-pass metabolism, since the drug was up taken by M-cells of the 
Peyer’s patches in the intestine and further secreted into the lymphatic 
system [98]. Further studies to improve the bioavailability and efficacy of 
raloxifene reported that encapsulation of raloxifene in negatively charged 
nanoparticles/nanocapsules exhibited Controled release of the drug and 
also elicited potent anti-proliferative effect against cancer cells [99,100]. 
Interestingly, raloxifene nanoparticles have been developed for increased 
bioavailability following both oral and intranasal administration [101-103].

Although raloxifene exhibited enhanced bioavailability and efficacy following 
encapsulation in nanoparticles, investigation into its efficacy against prostate 
cancer has been studied only recently. Taurin et al., investigated the cytotoxic 
potential of raloxifene encapsulated in styrene maleic acid (SMA) micelles 
(SMA-Ral) toward CRPC cells PC3 and DU145. Although SMA-Ral was 
cytotoxic toward both PC3 and DU145 cells at 5 and 10 µM, PC3 cells were 
more sensitive than DU145 cells in their response to SMA-Ral. Compared 
to the free drug, SMA-Ral was superior in eliciting not only cytotoxicity, 
but also increased apoptosis (11-fold), inhibited cell migration, invasion, as 
well as increased cell cycle arrest at the G0/G1 phase 20% [104]. The higher 
sensitivity of PC3 cells to SMA-Ral treatment was also shown via a 90% 
decrease in the expression of a splice variant of ERα, Δ5ERα, a decrease in 
the nuclear translocation of ERβ, and a 36% decrease in the expression of 
the EGFR expression and other downstream cell signaling proteins [104]. 
Confirmation of these results in xenograft models of CRPC using SMA-Ral 
demonstrated that the micelles accumulated to a greater degree in prostate 
tumors after 24 h, compared with the free drug [105]. Weekly administration 
of 1 mg/kg and 5 mg/kg of free raloxifene suppressed tumor growth 20% and 
40%, respectively, after 4 weeks. However, SMA-Ral (1 mg/kg) was able 
to suppress tumor growth by 40% without any eliciting any toxic effects. 
This highlights the fact that encapsulation of raloxifene in nanomicelles 
was able to provide a similar tumor suppressive effect in vivo at a 5-fold 
lower dose [105]. Thus, raloxifene encapsulated into SMA micelles have 
potential to be developed into a safe and effective treatment for CRPC.

Conclusions

There is an urgent need to develop new targetable therapies to treat CRPC, 
a cancer with high metastatic ability and poor survival rates. Raloxifene, an 
FDA approved drug for the treatment of osteoporosis, has shown promising 
results in the studies conducted so far using in vitro, in vivo models and in 
clinical trials. Hence, it has the potential to be developed as an anti-cancer drug 
and could be repurposed for use in the management of CRPC. However, the 
future use of this drug most likely lies within the field of nanomedicine due to 
its poor bioavailability and rapid pre-systemic clearance. Since raloxifene is a 
drug that is already in use, the development of a safe, less toxic and effective 
treatment for CRPC could become a reality in the near future for patients in 
desperate need of a novel targeted therapy against this advanced form of cancer.
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