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Precision medicine has gained prominence is contemporary medical 
science; besides, computerized and homogenous assessment of patient data 
is supported by open source machine learning [1]. The aim of precision 
medicine includes making correct extrapolations or predicting the ideal 
pharmacotherapies from the genomic profiles of benign or malignant 
cancerous polyps among the patients [2]. In an idyllic situation, the 
predictions mostly depend on any existent robust cause and effect linkages 
[3]. The researchers propose an open source platform which can be valuable 
with regards to predicting initialed drug reactions from the gene expression 
profiles [4]. The platform uses a recursive feature elimination technique and 
an extremely adaptable support vector machine algorithm (SVM) [5]. They 
relied on the National Cancer Institute (NCI) to access drug reactiondata in 
addition to gene expression data from sixty cancer cells [6]. The data was 
used to build drug specific prototypes which are highly precise in estimating 
the drug receptiveness of diverse cancer cell [7].

Furthermore, the researchers proved that the predictive precision is 
maximized in case the learning data does not to pre-filter genes which are 
regarded as activating factors of cancer commencement or progression in the 
patient [8]. After applying their model to gene expression sets of data among 
patients who have been diagnosed with ovarian cancer (OC), they were 
capable of making correct predictions which can be considered as being 
similar to the reactions contained in the studies which were reviewed [9]. 
Importantly, by developing an open source algorithm, the scholars intended 
to ease its experimentation in diverse cancer settings and cancer categories 
which can promote modifications and enhancements in the successive future 
usage [10].

Genome-wide association studies (GWAS), mapping of quantitative trait 
loci (QTL), and sequencing of human genome processes have immensely 
assisted in creating greater awareness about the molecular trails linked to 
human diseases [11]. The usage of open-source writings and substantial 
dissemination of data have benefitted from such efforts [12]. Lately, drug 
prediction in cancer treatment has integrated machine learning (ML), each 
linked with varying levels of achievement, for instance, the pRRophetic 
and Bioconductor [13]. As indicated, the researchers proposed an open 

source software platform to predict response of cancer medication whereby 
during the pilot phase, they explored or accessed dataset which is freely 
available;then, they were subjected to formatting and later they divided 
the array files into investigational and learning sets [14-15]. Similarly, the 
researchers found out that the predictive precision was augmented when a 
variety of cancer categories were used to construct upon the models [16]. 
Lastly, the predictive accuracy was considerably lowered after learning data 
which are built using predetermined biotic models were pre-sorted [17-18]. 
The researcher proved that the predictive accuracy can be increased by 
developing Support Vector Machine-based models across diverse categories 
of cancer [19].

Choosing suitable learning dataset to construct the extrapolative simulations 
of cancer medication reaction is difficult since scientists or researchers have 
not fully described the molecular processes which cause cancer progression 
or onset [20]. Therefore, it is possible that a gene expression arrangement 
that is linked to a certain cancer disease might be causative factor of cancer 
development. The researchers made appraisal of two Support Vector 
Machines-derived frameworks developed to make estimate of the cancer 
treatment carboplatin which is usually extensively prescribed in the market 
to determine their relative accuracies [21]. Medication reaction and gene 
expression profiles were utilized to construct the respective frameworks. 
There has been a restricted usage of open source algorithms in performing 
medication prediction due to the lack of online repositories as compared to 
the resources which are accessible for machine learning applications, for 
instance, which facilitate depositing of other computational solutions [22]. 
The researchers are confident that the open source support vector machine 
algorithm can be valuable towards improving the individualized cancer 
medicine and drug extrapolation [23]. The algorithm combines a single 
data standardization approach with an ordinary Support Vector Machine 
methodology which is then implemented in seven commonly drugs used 
during chemotherapy as shown below [24-25]. 

The drug reaction had high levels of prognostic precision when the 
framework was constructed using data from diverse cancer categories [26]. 
The study outcome corroborates the current available proof that stipulate 
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Figure 1: Model prediction and response rate [1].
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that optimum cancer drug response’s molecular signatures are not essentially 
defined by the tissue that causes cancer disease [27]. Furthermore, the 
outcomes prove that considerable enhancements can possibly be done 

in machine learning-based systems to improve their predictive accuracy 
especially through modulating the format and the kind of learning set of data 
as utilized in the process of building the model [28].
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