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Precision medicine has gained prominence is contemporary medical 
science. Besides, automated and standardized assessment of patient data 
is supported by open source machine-learning [1]. The aim of precision 
medicine includes making correct prediction of ideal pharmacotherapies 
from the genomic profiles of tumors. In an ideal situation, the predictions 
mostly depend on robust cause and effect relationships [2]. The researchers 
propose an open source platform to predict personalized drug responses 
from gene expression profiles. The platform uses a standard recursive 
feature elimination (RFE) technique and an extremely adaptable support 
vector machine (VSM) algorithm [3]. They used the National Cancer 
Institute panel to collect drug response and gene expression data obtained 
from sixty human cancer cell lines (NCI-60) [4].  The data was used to 
build drug specific models which are highly precise in making prediction 
of the drug responsiveness of diverse cancer cell lines inclusive of those 
which comprise the latest NCI-DREAM Challenge [5]. Furthermore, the 
researchers prove that the predictive precision is maximized when the 
learning dataset fails to pre-filter genes which are regarded as activating 
factors of cancer onset or progression [6]. After applying their model to 
ovarian cancer (OC) patient gene expression datasets which publically 
available, they were able to make predictions which were similar with the 
responses contained in the literature [7]. Importantly, by developing an 
open source algorithm they intended to facilitate its testing in diverse cancer 
contexts and types which can promote modifications and improvements 
which are largely community-driven in the successive applications [8,9].

Quantitative trait loci (QTL) mapping, genome-wide association studies 
(GWAS), and human genome sequencing have immensely assisted in 
creating greater understanding about the molecular pathways linked to human 
diseases [10,11].  The use of open-source scripts and liberal data sharing 
have benefitted such efforts [12]. Lately, the field of personalized cancer 
drug prediction has integrated machine learning (ML), each linked with 
varying levels of success for instance, the pRRocphetic and Bioconductor 
[13]. As indicated, the researchers proposed an open source software 

platform to predict response of cancer drug whereby during the pilot phase 
they explored the NCBI Gene Expression Omnibus (GEO) to access publicly 
available datasets which were then they were subjected to formatting and 
before partitioning the array files into experimental and learning sets [14,15]. 

It is evident that when microarray probe level expression data were used 
in the process of model building, the predictive accuracy was greatly 
enhanced as compared to instances when average gene expression values 
utilized [16]. Similarly, the precision was increased when a variety of 
cancer types were used to build upon the models. Lastly, the predictive 
accuracy was considerably lowered after learning datasets which are built 
using preconceived biological models were pre-filtered [17]. The researcher 
proved that the predictive accuracy can be increased by developing SVM-
based models across diverse types of cancer. 

Choosing a suitable learning datasets to build the predictive models of 
cancer drug response is difficult since scientists or researchers have not 
fully described the molecular processes which cause cancer progression 
or onset [18]. Therefore, it is possible that a gene expression pattern that 
is linked to a certain cancer type might be causative factor of cancer 
development [19].  The researchers made comparison of two SVM-derived 
models developed to make prediction of the cancer drug carboplatin which 
is usually extensively prescribed in the market to determine their relative 
accuracies [20]. Drug response profiles and gene expression profiles were 
used to build the respective models. There has been limited use of open 
source algorithms in performing cancer drug prediction due to the lack of 
Bio conductor, Source forge, and Git Hub among other online repositories 
of prediction software as compared to the resources which are accessible 
for alternative machine learning applications, for instance, the Large 
Online Image (LOI) repository competitions which facilitate depositing 
of other computational solutions [21,22]. The researchers are confident 
that the open source support vector machine (SVM)-based algorithm can 
be valuable towards improving the personalized cancer medicine and 
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cancer drug prediction [21]. The algorithm combines a “one-by one” 
data normalization pipeline with a standard SVM methodology which is 
then implemented in seven commonly used chemotherapeutic drugs [24].

The drug response had high levels of predictive accuracy when the 
model was constructed using data from diverse cancer types [25]. The 
study outcome corroborates the current available evidence that argue that

optimum cancer drug response’s molecular signatures are not 
essentially defined by the tissue of origin of the cancer type [26]. 
Furthermore, the results prove that considerable enhancements can 
possibly be done in machine learning-based algorithms to improve 
their predictive accuracy especially through modulating the learning 
dataset’s type or format as utilized in the model building process [27].
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