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Finding drugs that can positively offer treatment of tumors and subsequently 
providing a prescription of an ideal clinical treatment regimen are regarded 
as the core activities of precision oncology [1]. In most cases, precision 
oncology involves the use of effective therapies to identify and target tumor-
explicit abnormalities. Nonetheless, there are no biomarkers to provide 
guidance on how the majority of the first-line chemotherapy medications 
such as the nonspecific cytotoxic drugs can be applied [2]. Some restrictions 
that negatively affect the utilization of a drug target’s genomic status as a 
therapeutic indicator in relation to molecularly targeted pharmacotherapies 
[3]. Notably, the method only benefits a small number of patients. The 
researchers relied on train classifiers to predict the drugs’ effectiveness in 
cancer cell lines as well as deep learning or machine learning to explore the 
genome-scale omics data in order to determine any informative features [4]. 

The technique proposed in the study can correctly make prediction of the 
effectiveness of the drug despite being nonspecific chemotherapy drugs or 
molecularly targeted drugs [5]. The methodology can detect subtle cancer 
cells with an average specificity and sensitivity of 0.8 respectively on a 
per-drug basis [6]. Additionally, it can determine the effectiveness of the 
drugs with an average specificity and sensitivity of 0.8 correspondingly on 
the basis of the per-cell line [7-8]. The study seeks to propose a precision 
medicine method that is largely data-driven, maximizes therapeutic efficacy, 
and it is highly generalizable [9]. The framework discussed in the article can 
considerably benefit a majority of cancer patients since it has the potential 
of widening the space of precision oncology further than the targeted 
therapies especially when it accurately explained in clinical settings [10]. 

Cancer therapeutics can greatly be improved through data-driven methods. 
The present techniques fail to correctly match the sensitive drug-cancer 
pairs despite latest extensive pharmacogenomics screening on patient-
derived xenografts (PDX) and cancer cell lines proving that nearly every 
PDX or cancer cell line has sensitivity to a single or multiple non-targeted 
or targeted drugs [11]. Additionally, there are minimal data-driven models 

that cover non-specific cytotoxic medications. The genomic markers cannot 
be regarded as correct indicators when applied in molecularly targeted 
medications [12]. When one relates or applies the scenario in clinical 
environment, it means that majority of the patients receive treatment 
using wrong chemotherapy owing to the absence of prognostic predictors. 
Alternatively, with regards to molecularly targeted medications, most of 
the complex cancers fail to host genomic variations in the targeted genes 
[13]. The medical effect is that there are patients who might greatly benefit 
on such molecularly targeted drugs, but they are overlooked owing to the 
imprecision of the genomic markers [14]. The therapeutic significance of 
the current anticancer drugs for improving treatment results can be exploited 
and optimized when such groups of patients are correctly identified [15]. 
Presently, researchers have been able to collect transcriptomic and genomic 
data as well as drug sensitivity data related to a huge number of PDXs and 
cancer cell lines using pharmacogenomics experiments [16]. Mostly, such 
investigations have sought to determine the relationship between drug-
sensitivity evaluations (for instance IC50) as well as the omics features 
[17]. Furthermore, other researchers have used advanced classification 
models like the SVM and the ridge regression in training prognostic models 
whereby the genome-scale omics data is relied upon input features [18]. 
Nonetheless, the computational models have performed dismally. Therefore, 
drug sensitivity can correctly be predicted using a model-based technique 
which helps expert to learn the unique features from the omics data as 
well as deal with overfitting triggered by the challenges that are usually 
experienced owing to extreme dimensionality of the omics data as well as the 
comparatively minimal number of training cases which are accessible [19].

The researchers attempted to develop a prognostic model that can 
successfully be used in both targeted and untargeted therapies (conventional 
chemotherapy and molecularly targeted drugs) to predict their effectiveness 
on cancer cell lines [20]. They combined modern machine learning 
methods such as the support vector machines with the genomescale omics 
data [21]. The findings reveal that data-driven methods can considerably 
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outdo the present rule-based methods which use drug targets’ genomic 
status as the main therapeutic indicators [22]. The findings support 
the need for additional studies on the degree by which the introduced 
techniques can enhance prediction of how patient tumors are sensitive 
to the presently accessible cancer medication [23]. The investigations 
proves that omics data have details that can be considered as valuable and 
convenient with regards to predicting a sensitivity of cancer drugs [24].

Metabolomics, proteomic, transcriptomic, and genomic data will play an 
active role with regards to advancing data-driven precision medicine as the 
expenses related to collection of omics data considerably reduces while 
biotechnology continues to advance and assist in collection of molecular 
phenotypes [25]. Computer-based decision support system can be used to 
provide the available cancer treatment such as the cytotoxic chemotherapies, 
immunotherapy, and molecularly targeted drugs [26]. It is evident that 
precision oncology can improve therapeutic efficacy in cancer treatment. 
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