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Introduction

In the classical statistical analyses it is often assumed the data is collected 
without measurement error or contamination. Simply stated, the random error 
is only assumed on the dependent variable and not on the independent variable. 
However, this is just a simplification of reality. Whenever data is measured 
in real life, there is always measurement error due to the inaccuracy of the 
measuring equipment, consider, for example, thermometers, chronographs, 
pressure sensors, etc. Taking this extra random error into account is usually 
referred to as a deconvolution problem or errors in-variables [1]. One of the 
earliest results considering this problem setting can be found in Berkson [2]. 
Further theoretical developments were done by Carroll and Devroye [3,4]. 
Deconvolution problems occur in many fields of nonparametric statistics, for 
example, density estimation based on contaminated data [5], nonparametric 
regression with errors-in-variables [6], image and signal deblurring [7]. 
During the last decades, these topics have received considerable attention. As 
applications of deconvolution procedures concern many real-life problems 
in econometrics, biometrics, medical statistics and image reconstruction. 
On the other hand, some rigorous results from Fourier analysis, functional 
analysis and probability theory are required to understand the construction 
of deconvolution techniques and their properties. Therefore making this field 
particularly interesting for mathematicians.

We will now introduce the mathematical concept of nonparametric regression 
with errors-in-variables. There are direct links with the density estimation 

setting with contaminated data. In standard nonparametric regression with 
errors-in-variables, we assume that the independent variables (covariates), 
X, can only be observed with some additive independent noise. Therefore, 
we change the observation scheme into the independent and identically 
distributed (i.i.d.) dataset (W1, Y1), . . . , (Wn, Yn), where

                Wj = Xj+δj and Yj = m(Xj)+εj , j = 1, . . . , n (1)

where m is the regression function. The independent variable errors δj 
are i.i.d. unobservable random variables having error density g. Note that 
they are different from the regression errors εj. The δj are stochastically 
independent of the Xj and the Yj. In order to proceed, we need one of the 
two following assumptions: the error density g is known or unknown. The 
optimal rates of convergence critically depend on this error density g, more 
specifically on the tail behavior of the Fourier transform of g. The following 
two types of error distributions are intensively studied in the deconvolution 
literature: ordinary smooth (e.g. Laplace, Gamma) and supersmooth (e.g. 
Cauchy, Gaussian) error densities. Simply said, densities characterized by 
the fact that their Fourier transforms decay in some finite power are called 
ordinary smooth. Densities whose Fourier transforms have exponential tails 
are called supersmooth. The supersmooth case turns out to be the hardest 
problem. We refer the interested reader to [8] for a rigorous theoretical study 
regarding deconvolution problems in nonparametric statistics.
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Methods and Challenges

In case the independent variables are not affected by contamination i.e., X1, 
. . . ,Xn are directly observed, the Nadaraya-Watson (NW) kernel estimator 
with bandwidth h is a popular kernel regression estimator. However, in the 
measurement error case, we only observe contaminated data W1, . . . ,Wn and 
the Nadaraya-Watson estimator needs to be adapted. This modification was 
proposed by [9]. The NW estimator is a special case of the local polynomial 
kernel regression family [10]. One of their attractive features is their capacity 
to adapt automatically to boundary effects and hence reducing the bias with 
no or little variance increase (for certain polynomial orders). Extending the 
errors-in-variables case to the local polynomial framework was proposed 
by [11]. Their methodology consists of constructing unbiased estimators of 
the terms depending on the non-observable independent random variable X 
involved in the standard local polynomial regression estimators. The key 
to finding these unbiased estimators is the Fourier transform. This problem 
remained unsolved for more than 15 years!

Although serious theoretical progress is made regarding this complicated 
problem, some questions still remain (partially) unanswered:

• In practice we do not observe the contamination error δ. How can this be 
estimated?
• Kernel based regression estimators depend on a bandwidth h. Usually this 
is found by cross validation or plug-ins. Unfortunately they all depend on the 
fact that the independent variables X1, . . . ,Xn are directly observable.
• Does there exist an optimal deconvolution kernel? And if so, which one 
is it?
• How can this be extended to the multivariate case?
• How to implement this in a numerically stable way?

Earlier studies assumed a specific parametric form for the contamination 
density and estimated a specific parameter of that density without any 
additional observation [8,12]. However, in real life applications a known 
contamination density is a rather unrealistic assumption. A consistent 
estimator of m can only be constructed if the contamination density can be 
consistently estimated. Second, [13,14] assume that a sample of observations 
from the error density is available and estimate the density non parametrically 
from those data. A third approach, applicable when replicated measurements 
(panel data) are available, consists of estimating the contamination density 
from the replicates [15,16]. The latter being the most commonly used.

Most nonparametric regression estimators (not only kernel based ones) 
have one or more so-called tuning parameters. Usually, these are found 
via some data driven method such as cross-validation (CV). However, this 
method assumes that the independent variable, X, is directly observable 
and there does not seem to exist a straightforward extension of CV to the 
error-in-variables problem. Probably one of the first approaches to data-
driven bandwidth selection, called SIMulation and EXtrapolation (SIMEX), 
in this setting was proposed by [17]. The key idea of this method is to 
generate new observations with increased noise levels. Then, fitting those 
data at different noise levels resulting in some appropriate estimated curve 
w.r.t. to the noise level in some real interval. An empirical version of the 
estimated quantity is then obtained by the value of the extrapolated curve 
at a noise level equal to zero. Delaigle and Hall [17] suggested to add some 
additional independent noise to the independent variables. Their numerical 
simulations indicate that this methods tends to work well for this setting.

In general, there are close parallels between the optimal kernel choice 
in nonparametric density deconvolution and its counterpart in density 
estimation. However, certain aspects of these problems are strikingly 
different. Therefore, Delaigle and Hall [5] stated the following: “this property 
leads us to conclude that optimal kernels do not give satisfactory performance 
when applied to deconvolution.” The reason for this is that certain standard 
side conditions are necessary in this setting. However, at the time of writing, 
we are not aware of a similar study being performed for the nonparametric 
regression case with errors-in-variables. However, looking at the exact mean 
integrating squared error expression suggests that kernels which have a flat 
top in the Fourier domain are quite suitable [1].

Finally, most authors study the univariate regression case but many real data 
sets are bivariate or multivariate. Although there exist an extensive literature 
on multivariate density deconvolution, the multivariate regression case is 
severely lacking. Fan and Masry [18] and Masry [19] established asymptotic 
properties and considered the case of stationary random processes with 
errors-in-variables respectively. But no data-driven procedure for bandwidth 
selection was suggested. Besides the theoretical aspects, the numerical 
implementation of the deconvolution framework is equally important. In 
general, computing these estimators requires special care. Since there are no 
closed form solutions at hand for the integrals involved in the calculations 
numerical techniques have to be used. It is known that the integrand can 
oscillate quite severely causing fast numerical integration algorithms to fail. 
This problem can be avoided by using the fast Fourier transform [20,21]. 
There exist an R package decon [22] which implements the deconvolution 
estimator for regression (local constant regression) and provides some 
bandwidth selection criteria. Unfortunately, as reported in [23] there are 
some problems with this package (version 1.2-4).

Conclusion

In this brief manuscript we gave an overview of advancements and 
challenges in deconvolution problems. Classical kernel regression estimation 
(and also density estimation) suffer when the independent variables are 
contaminated with measurement error. This is due to the fact the classical 
estimators inherently assume an error-free independent variable. In order to 
allow that the estimator can deal with these measurement errors or error-in-
variables, the classical estimators need to be modified. The key method in the 
deconvolution approach is the Fourier transform.
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