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Internal clustering validation indexes (CVIs) which can be assumed as 
the objective function of clustering algorithms is usually relied upon to 
assess the quality of different clustered partitions with the intention of 
ascertaining the local clustering outputs in an unsupervised way [1].  The 
researchers started by investigating numerous popular internal clustering 
validation indexes used for categorical data clustering [2]. In addition, they 
validated the ineffectiveness of assessing the partitions of diverse sets of 
clusters while disregarding any inter-cluster assumptions or separation 
measures [3]. The correctness of separation as well as how it coordinates 
with the intra-cluster compactness measures negatively impact performance. 
Consequently, the researcher suggested a new internal clustering validation 
index known as CUBAGE which could assess both the partition’s separation 
and the compactness [4]. The study results proved that the CUBAGE 
performed excellently as compared to other internal clustering validation 
indexes whether in the presence or absence of the number of clusters [5]. 

Clustering analysis involves subdividing a set of data into clusters with 
the aim of grouping similar and dissimilar objects into their respective 
clusters. There are two types of clustering methods namely the hard and 
soft techniques [6]. In this case, the researchers adopted the hard former 
where all the objects belonged to a single cluster. The partitions obtained 
after clustering largely varied with the criteria of dissimilarity or similarity, 
clustering methods, and the parameter settings [7]. For instance, the 
clustering technique’s mechanism such as the random initialization also lead 
to variations in the clustering outcome or output. The researchers sought 
to determine the final result from several likely partitions by performing 
numerous clustering processes with diverse schemes correspondingly 
before they chose the highest quality partition [8]. For the researchers, they 
focused on exploring the use of internal and external clustering validation 
indexes to help in defining and measuring the quality of partitions [9].

The internal CVIs can be relied on to assess the compliance of the clustered 
and prior partitions. Alternatively, the external CVIs rely on information 
obtained from outside sources to measure the quality of the clustering 
output.  For example, in the case of the presence of prior knowledge, it can 

be utilized to analyze the compliance of the previous and clustered partitions. 
Since the unsupervised scenario lacks prior knowledge, the external CVIs 
cannot be applied [10]. The internal clustering validation indexes do not 
need previous experience, and usually, they can be applied in different areas 
or discipline such as data mining, biological engineering, image and text 
analysis, as well as information retrieval [11]. The inter-cluster isolation or 
separation and intra-cluster compactness are relied upon to test the quality 
of clustering results internally [12]. The isolation indicates how the data sets 
in a single cluster are dissimilar to others while the compactness signifies 
the level of equivalence or uniformity of data sets in the same cluster [13].

Furthermore, since numerous internal clustering validation indexes such 
as the Calinski-Harabasz, the Silhouette, the I, and the Dunn indexes 
are regarded as inept for categorical data clustering since they utilize 
intuitive geometric information to analyze the partitions [14]. There is 
need for advance or additional studies in internal clustering validation 
indexes for categorical data since there is a massive amount of categorical 
data being practically applied as well as the problematic concerns that 
have failed to be fully handled in the literature [15]. Consequently, the 
researchers restricted the scope of the study to offer perspectives and 
improvements of the internal clustering validation indexes for categorical 
data [16]. They sought to determine if the internal CVIs for categorical 
data without isolation measures disregard the isolation, whether they 
demonstrate monotonicity with regards to the total number of groups, and 
what can be done to improve the performance of the internal CVIs [17].

The researchers investigated five popular internal clustering validation 
indexes used for validating categorical data clustering. They include two 
objective functions of clustering with subjective factors and slope (R 
and Cloper respectively), the category utility function (CU), the k-modes 
objective function (F), and the information entropy function (E) [18]. They 
focused on examining the separation or isolation and compactness measures 
to determine the characteristics of the five internal CVIs [19]. Furthermore, 
they sought to determine if monotonicity in some particular situations can 
be shown by the compactness measures for categorical data as well as how
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isolation measures can help to offset the monotonicity [20]. Additionally, 
they proposed the CUBAGE which analyzes the dataset’s reciprocal 
entropy to measure compactness and AGE to assess the isolation [21]. The 
CUBAGE performed excellently in the experimental studies as compared 
to other indexes proving that the compactness and separation measures 
are correct; besides, they perfectly coordinated in majority of the datasets.
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Figure 1: Clustering procedure consisting of four steps with a 
feedback pathway. (Source: James C. Bezdek, Objective Function 
Clustering (Boston: Springer, 1981) 67.)
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