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In contemporary oncology, there is great effort to develop individual 
predictors of clinical drug effectiveness. Therefore, for any particular 
patient with positively diagnosed cancer type as well as a selected drug, 
the researchers sought to approximate the treatment effect which was 
caused by the medicine [1]. Machine learning (ML) techniques and gene 
expression are widely applied to conduct statistical exploration of a set of 
clinical cases for all patients [2]. Nonetheless, the approach is hindered by 
a significant challenge that is, the total set of available cases to be analyzed 
is quite restricted [3]. Alternatively, there are multiple cell cultures in 
the biotech drug industry which are sustained by gene expression data 
then assessed to evaluate drug scoring [4]. In this case, the researchers 
demonstrate how the cell lines data can be integrated into the machine 
learning analysis to enhance the development of discrete predictors [5]. 
In personalized medicine, scientists have been able to explore the field of 
big data collected for a particular patient (for instance, gene expression 
or mutational data) to predict the effectiveness of a certain treatment 
regimen or drug for the patient [6]. Personalized medicine is widely 
applied in oncology and it utilizes machine-learning methods owing to 
the complex characteristics of the processes that define both progression 
of cancer as well as the likely methods that facilitate its subdual [7].

Presently, there are many dominant and cutting-edge tools such as the 
Support vector machines (SVM) that are used to conduct regression 
analysis and classification [8]. The Support vector machines have proved 
to be more effective in relations to modifications in input data as compared 
to other machine-learning algorithms such as the classical multi-layer 
perceptrons (MLP) [9]. In the training dataset, the SVM need a smaller 
number of preceding cases while the MLP utilize the least square fitting 
method [10].The SVM have proved to be essential in predicting the 
efficiency of data for cancer patient owing to the fact that the current 
MLPs need many points for the training dataset to sufficiently cover the 
phase space [11]. In opposite, the separators which are largely SVM-based 
might tolerably operate with lesser points in the training datasets [12]. 

Regrettably, it is extremely challenging for majority of the anti-cancer 
drugs to obtain the multiple gene expressions that were found through 
the use of the similar investigation platform for the patients received 
treatment with the similar drug with the identified clinical outcome [13].

With regards to application of the SVM method to effectively perform 
prediction of anti-cancer drug efficiency, the researchers proposed a new 
technique that allowed expression-based data to be transferred to the 
validation (V-) dataset provide description of similar data collected from 
positively diagnosed cancer patients from training (T-) set that contains 
expression-based data for cell lines [14,15] The researchers introduced 
a combination of SVM and kNN methods to stop the SVM process from 
engaging in pointless adaptation especially while data is being transmitted 
to the V-set (data for patients) from the T-set (cell line data) [16].

Combining the SVM-with-kNN technique signify that the T-set’s K 
points which are proximal to a particular point in the V-set are relied to 
construct the SV model [17]. The move means, for each V-set point, the 
new data transfer method lowers or filters the T-data by use of a floating 
window surrounding all points in the V-set to disregard the impact of the 
points which are located far from the T-set [18]. The combination was 
used to analyze three type of cancer diseases namely lung, renal, and 
CML cancer [19]. For each condition, the researchers chose the best K 
value which is relied in maximizing the Area-Under-the-Curve (AUC) to 
predict the drug response for the group of patients [20]. The highest AUC 
value surpasses 0.69; the ideal K value seems to be strong and constant 
consistent with the V-dataset’s leave-one-out quality assurance process [21].

The researchers did a permutation test to determine whether the 
support vector machine-with- kNN process is not overtrained. The 
test whereby the real non-responder/responder flags for the V-dataset 
samples were substituted with arbitrary values [22]. With regards to 
the three types of cancer the unsystematic permutation tremendously 
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reduced the aggregate number of cases when the Area-Under-the-Curve 
(AUC) was less than 0.69 [23]. Furthermore, the p-value was 4•10-
4 for the null hypothesis meaning the reduction was triggered by an 
arbitrary chance concurrently for the dataset of the three conditions [24].

The researchers were confident that their method had numerous 
benefits of both international (such as support vector machine) and 
national (for instance the kNN method) machine learning methods [25].
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Drug
GEO reference
Disease type

Lung cancer,
sorafenib [14]
GSE31428

Renal cancer, sorafenib
(current study)

CML, imatinib
[15]
GSE2535

Samples 37 (23 responders,
14 non-responders)

28 (13 responders,
15 non-responders)

28 (16 responders,
12 non-responders)

Optimal K value 29 162 104

AUC for optimal K value 0.72 0.81 0.78

p-value for Gaussian test 0.16 0.04 0.07 

The outcome of performance test for kNN technique (Source: Borisov, Nikolay, Victor Tkachev, Ilya Muchnik, and Anton Buzdin (2017) 
Individual Drug Treatment Prediction in Oncology Based on Machine Learning Using Cell Culture Gene Expression Data. In Proceedings of 
the 2017 International Conference on Computational Biology and Bioinformatics 1: 1-6).
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