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1.Introduction

Bayesian estimation is a well known technique in applied science and 
as such was addressed by a large number of theoretic studies. Besides 
notorious problems in prior determination, the method is subjected to errors 
in the likelihoods. One class of likelihood error is induced by bias or shift 
in the argument of the likelihood leading to a shift of the functional graph 
as well as of the expectation. The present study investigates the effect 
of likelihood shifts. It focuses on the case of large shifts of an estimators 
error probability distribution (pd) on the real numbers and deals with 
the question, which conditional pd is induced on a bounded interval in 
the far tail of the estimators error pd. For a large pd class, containing 
many important pds for application problems, the induced conditional 
pds on a bounded interval in the far tail are computed and classified.

Our study is motivated by a forensic science expertise in a murder trial 
where a Bayesian technique called Conditional Probability Distribution 
(CPD), published by Biermann and Potente [1], was used to include 
witness reports into confidence interval estimation for temperature based 
death time estimation. We published a study [2] on the errors caused by 
large input biases in the CPD method, dealing with the special case of the 
Gaussian distribution. The present article generalizes the asymptotic result 
of [2] to a wide spectrum of distributions and gives a classification theorem. 

2.Terminology

Our considerations use the terminology of general probability theory, which 
defines the general conditional probability P(A|B) of an event A, given an event 
B, where A and B are sets or families of sets of a common probability space O 
which is never mentioned explicitly. The sets A and B are specified by stating 
arithmetical or analytical formulae for random variables e.g. “A = {w in O | 
t(w)=a}” means, that A comprises all w in O for which the random variable t 
takes the value a. We adopt the convention to write e.g. P(t^ | t) with two random 
variables t and t^ given for a type of probability distribution of the random variable 
t^ under a fixed but not specified condition given by an arithmetic statement 
(equivalent to a set A in O) concerning the random variable t as e.g. A = {w in O 
| t(w)=a}. If the condition is specified, we write e.g. t=a abbreviating the term for 
the event A above. For basic terminology see e.g. the textbook of Papoulis [3].

2.1 Bayesian Estimation

Let t be a random variable taking values in the real numbers IR and let 
t^ be an estimator of t. The pd of t^ given the true value of the variable 
t is denoted in a somewhat sloppy style by P(t^ | t) and is called the 
likelihood as usual in Bayesian estimation. Generally we will use this 
sloppy notation and specify values only if the reader would be mislead 
else. The probability distribution density (pdd) of t^, given the true value 
of the variable t, is labelled f(t^ | t) and will be called likelihood density.
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The (unconditional) pds of the variables t and t^ are named the prior P(t) and 
the marginal distribution P(t^) and we use g(t) and h(t^) as symbols for their 
pdds. We can now introduce the pdd f(t | t^) of the posterior P(t | t^). Since 
the posterior density f(t | t^) belongs to a conditional pd, it may be written: 

The purpose of Bayesian estimation (BE) is to compute an estimator of the 
posterior f(t | t^) given an expression f(t^ | t) for the likelihood and another 
expression for the prior g(t). Expressing h(t^) as the integral of f(t^ | t) g(t) 
over all t makes it possible to eliminate h(t^) from (1) yielding:

Let E(t^ | t = t
0
) be the conditional expectation of the variable t^ given a value 

t0 of the variable t in case of existence of the expectation with respect to 
the likelihood pdd f(t^ | t = t

0
) given a fixed value t

0
 of the variable t. We will 

frequently omit the assignment of the value “ = t
0
”, sometimes the condition “t 

= t
0
” as a whole and sometimes even the argument brackets and the symbol 

t^ - writing simply E^ in cases where no confusion can occur. The symbol f(t^ 
| E^, t) will be used in case E(t^ | t) exists and if we want to emphasize or 
use this fact. Sometimes we even skip the argument t^ and write f(E^, t) or 
f(t) for f(t^ | E^, t). The symbols f(t^| t) or f(t^) will be used for short in more 
general considerations, not depending on the existence of E(t^ | t). Writing 
g(t) for the prior pdd we are now able to represent (2) in a form, where the 
conditional expectation E(t^ | t) explicitly appears:

2.2 Shift Families of Probability Densities

Let f: IR→IR be a pdd on the real numbers IR and let Δt be any real 
number. Let further be fΔt:(s → f(s + Δt)): IR → IR, the Δt-shift of f and 
Γ be the shift family of f or the location family of f, which is the set of all 
possible Δt-shifts of f:

2.3.1 Remark

Condition (A3)(a) is equivalent to the existence of a positive constant e and a 
function α: J ∩ ]R,+∞[ → IR which is continuous and strictly monotonic and fulfills:

The fact that f is a pdd implies an upper boundary to the descending rate of 
the integral over α.

During the investigation of the impact of large likelihood shifts on the result of 
BE a certain quantity – we call it the auto asymptotic limit - evolves, which 
measures the asymptotic decline intensity of a pdd on an unbounded interval J 
of the real numbers IR. We define:

Let E be the expectation of f, then we yield the expectation EΔt
 of any fΔt

 by 
straight forward computation and via substitution:

So each fΔt
 is uniquely determined by its expectation EΔt

 = E - Δt and therefore 
the dependency on the expectation EΔt

 can be used to reparameterize the 
whole family Γ. This gives rise to a change of terminology integrating the 
expectation EΔt

 as second argument in the symbol for every family member 
fΔt

 of Γ:

As a direct consequence of (5) and (6) we have the following formula, which 
allows to push the shift Δt from the second to the first argument of f changing 
Δt’s sign:

2.3 Auto Asymptotic Limits 

In the following we present some general assumptions to specify a certain 
class A of pdds f, defined on open infinite intervals in the real numbers, which 
is investigated here. We use the symbol “↓↓” to express “strictly monotonic 
decreasing” and “↑↑” to represent “strictly monotonic increasing” and “↕↕” to 
denote strict monotonicity.

A pdd f, defined on an open infinite interval J in the real numbers IR is an 
element of the class A, iff there is a positive real number R with:

(A1) The function f is continuous on the rest J - ]-R,R[ of its range J with the 
interval ]-R,R[ removed.

(A2) (a) If +∞ lies in J, then f is strictly monotonic decreasing to 0 on the 
interval J ∩ ]R,+∞[:  

      b) If -∞ lies in J, then f is strictly monotonic decreasing to 0 on the 
interval J ∩ [-∞, -R[:

(A3) f is differentiable and f’ / f is continuous on J – [-R, R] and fulfills the  
condition:

      (a) If +∞ lies in J, then f’ / f is strictly monotonic on J ∩ ]R,+∞[:

      (b) If -∞ lies in J, then f’ / f is strictly monotonic on J ∩ ]-∞, -R[:
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2.3.2 Definition

Let J be an unbounded interval in the real numbers IR. The symbol x → +_∞ 
means x → +∞ in J if J is unbounded in positive direction and means x → 
-∞ in J if J is unbounded in negative direction. In case J = IR the symbol is 
used for both limit processes alternatively. Let f: J → IR be a pdd on J. The 
auto-asymptotic a[f] (AA) of the pdd f is defined:

The auto-asymptotic limit A±[f](δx) (AAL) is defined in case of existence as:

It is well known (see Pericchi and Sanso [4]) that the following proposition on 
AALs can be derived directly from their definition:

2.3.3 Proposition

For the pdd f on J there are λ+ in IR≥0 U {∞} and λ- in IR≤0 U {-∞} with: In 
case of existence:

The following remarks are direct consequences of proposition 2.3.3 and of 
definition 2.3.2.

2.3.4 Remark

For a pdd f in the class A defined by (A1), (A2), (A3):

B) The log-normal distribution L(v):

C) The Gamma distribution Γa,b:

D) The t-distribution t
n

2.3.5 Examples

A) The normal distribution v(μ,σ2)
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E) The Laplace distribution La: Case (1a): If additionally to (15) the matching condition of the alternatives 
(16) is realized:

Case (1b): If else additionally to (15) a matching alternative condition of (18) 
is given:

Case (2): If in contraposition to (15) one of the following conditions (20) is 
valid: 

3.2 Remark

Let the presuppositions of proposition 3.1 be given for the conditional pdd f(t^| 
t) of the unbiased estimator t^ of a real value t. Let for every real number Δt 
the shifted pdd fΔt

 be the pdd of an estimator t^Δt
, which therefore has a bias 

of Δt. Let PΔt
(t ϵ [a,b] | t^, t ϵ [c,d]) - which is computed using the shifted 

pdd fΔt
 - be the conditional probability of t in [a,b] under the conditions of t 

in [c,d] and the estimation value t^. The values of the variable t are realized 
by the transformation t = t

0
 - s, where t

0
 is an arbitrarily fixed value of t and 

s is a matching real random variable. This leads via application of (7) and the 
definition v:= t^ + s to:

the conditional probability of the true value of t lying in a partial interval [a,b] 
of the greater interval [c,d] under the additional condition of the true value of 
t lying in [a,b] can now be rewritten as:

Proposition 3.1 is proven in appendix B.

The results developed in proposition 3.1 are easily applicable to the case of 
estimator biases in BE with constant priors:

The following expression represents our probability of interest:

we yield:

F) The logistic distribution lc:
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We will show now that every function f in the function class A, defined by 
the conditions (A1), (A2), (A3) above, guarantees the existence of the AALs.

2.3.6 Remark

Let J be an interval in IR containing +∞ and / or -∞. Let f: J → IR be a pdd 
with (A1), (A2), (A3). This implies for all δx in IR the unambiguous existence 
of the AAL A

±
[f](δx) in IR≥0

 U {+∞}.

Remark 2.3.6 is proven in Appendix A.

3. Large Shifts

The following proposition investigates the case of large likelihood shifts which 
is caused e.g. by large bias. It provides asymptotic formulae for the probability 
PΔt

(t ϵ [a,b]| t ϵ [c,d]) in case Δt → ±∞.

3.1 Proposition

Let J be an open interval in the real numbers IR and let be +∞ in J or -∞ in 
J. Let further be f: J → IR a pdd which fulfills (A1), (A2), (A3) and let [c,d] 
be a nonempty interval in the real numbers IR and [a,b] a partial interval of 
[c,d]. For all Δt in IR let fΔt

(t) := f(t + Δt) and let PΔt
(t ϵ [a,b] | t ϵ [c,d]) be the 

conditional probability of t in [a,b] under the condition t in [c,d] with respect 
to the pdd fΔt

. Let λ± be the factor in the exponent of the AAL A
±
[f](δt) from 

(10). The following expressions can be derived for the asymptotic probability 
limΔt→±∞ PΔt

(t ϵ [a,b] | t ϵ [c,d]):

Case (1): One of the following alternative conditions (15) shall be fulfilled:
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Proposition 3.1 may now be applied to the probability PΔt
(t ϵ [a,b] | t^, t ϵ 

[c,d]), where v plays the role of t and the interval limits a, b, c, d are realized 
by: t

0
 - t^ – b, t

0
 - t^ – a, t

0
 - t^ – d, t

0
 - t^ – c. Note that in all cases the 

results do not depend on t
0
 or on t^.

4 Application Example: Forensic Death Time Estimation

Death time estimation (DE) means reconstruction of the time difference 
t
D
 between real death time t and time t

M
 of measuring a value X

M
 of a 

quantity X = X(s, θ) - e.g. in case of temperature based DE (TDE) the 
rectal temperature T

M
 = X

M
 - which monotonously depends on time s and 

whose value X
0
 = X(t) at time of death t is known. The parameter θ refers 

to any vector of measurable quantities (e.g. in the TDE approach of Marshall 
and Hoare [5] with the parameter definition of Henssge [6,7] the rectal 
temperature T

0
 at death time, the ambient temperature T

A
, the body mass 

m, and Henssges corrective factor cf), influencing the time evolution of the 
quantity X. Reconstruction is performed by solving the following equation 
system for t

D
:

The time of death estimator t^ can now easily be calculated by computing:

Since DE uses real world measurements, it is prone to measurement errors 
of its input variables θ, t

M
, X

M
 and X

0
 and to systematic errors of the model 

X(t) used. To cope with the resulting errors of the death time estimator 
t^, one usually represents t^ as a random variable associated with a pd 
P(t^) or with its pdd f(t^) respectively. Since the pd P(t^) is nearly always 
determined under the assumption of a fixed real value of death time t, one 
refers to the conditional pd P(t^ | t) of the estimator t^ under the condition 
of real death time t assuming a particular, though usually unknown, time 
value. This is the distribution most frequently stressed in application cases. 
The pd P(t^ | t) is also used as likelihood distribution for BE.

4.1 Temperature Based Death Time Determination

Choosing a special body temperature T as the quantity X leads to temperature 
based death time estimation (TDE). The most frequently used method of 
temperature based death time determination is the model based approach of 
Marshall and Hoare [4] with the parameter definition of Henssge [5,6]. It will 
be referred to here for short as the Henssge method. Relying on the central 
limit theorem it is implicitly taken for granted that the death time estimator 
t^ of the Henssge method is associated with a Gaussian distribution as its 
conditional pd P(t^ | t):

with the associated conditional pdd f(t^ | t): 

Where t is the true death time value, N is the probability function of the 
standard normal distribution or Gaussian, V is the variance value and [r,s] is 
any interval in the real numbers IR. It should be emphasized here, that the 
assumptions of (25) and (26) imply the estimator t^ to be unbiased, which 
means, that the expected value of P(t^ | t) is the true value t:

Usually there is only one temperature value T
M
 measured at a time t

M
. 

Therefore the estimated value t^ = t
M
 - t

D
(T

M
, t

M
) has to be taken as the only 

valid estimator of the expectation in formula (25) for the likelihood. In practice 
the following likelihood formula is used:

To compute the expression (3) for the application of the CPD-method.

4.2 Influence of Biased Death Time Estimators on Bayesian Estimation

We now assume the scenario of the time interval [c,d] with the particular 
partial interval [a,b] on the time axis and ask for the posterior probability P( 
tϵ[a,b] | t^, tϵ[c,d]) of the true death time t lying in the partial interval [a,b] of 
the time interval [a,b] under the conditions that the estimator t^ takes a fixed 
value and the true death time lying in [c,d]. The limit c of the last condition 
may be motivated by testimonies of witnesses who had seen the deceased at 
time c alive whereas the upper limit d is the time where the body was found. 
The question for P(tϵ[a,b] | t^, tϵ[c,d]) can be answered by a BE.

In cases where the conditional likelihood distribution P(t^ | t) used for BE is 
biased, the results are distorted in the typical way described in paragraph 3. 
Integration of the pdd f(t^ | t - Δt) over the intervals [a, b] and [c, d] of the 
true time of death t and taking the quotient and assuming a constant prior 
on [c, d] yields the conditional probability PΔt

( tϵ[a,b] | t^, tϵ[c,d] ), which 
bears the index Δt to remind the reader of the existence of the likelihood 
probabilities’ bias:
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Assuming a large bias Δt, we have to take into account the fact that with 
example (A) we have A

+
[ν(E,V)](δt) = 0 for all δt > 0 and A-[ν(E,V)](δt) = 

0 for all δt < 0. We apply formula (19) and yield:

4.3 Bayesian Estimation in Temperature Based Death Time Estimation 

The following hypothetical example (E) was constructed to show the power 
and the risks of the CPD [3] in case of its application to TDE in a court 
hearing of a homicide charge. Example (E) is similar to a real homicide 
case where we were took part as additional experts of the defense counsel. 

Example (E)

There is non-temperature information from testimonies that the deceased 
was still alive at a time c = 10:00 a.m. and his body was found at d = 4:00 
p.m. the same day, which makes the time of death lying in the interval 
[c,d] with a 100% probability a priori. The prime suspect has no alibi in 
a time interval [a,b] lying in the 100%-interval [c,d]. For a TDE approach 
there is a measurement consisting of the measurement time t

M
, the ambient 

temperature T
A
 and the rectal temperature T

M
 at t

M
. Backcalculation using 

Henssges TDE yields a time difference t
D
 between death and measurement 

which leads to an estimated time of death t^: Now the judge asks for the 
probability of the real time of death lying in the interval [a,b] with respect 
to the back calculation value t^. In our terminology this is the conditional 
probability P(t ϵ [a,b] | t^, t ϵ [c,d]). As usual the likelihood distribution P(t^ 
| t) of the TDE result t^, given the fixed time of death t, is assumed to be a 
Gaussian with expectation E = t and variance V. Let us assume Henssge’s 
TDE yields a 95% confidence interval radius r = 2.8 h, which results in a 
variance V = (r / 2)2 = 1.96 h2 of the likelihood distribution P(t^ | t).

Let us assume further that there are two alternatives for the alibi time 
interval [a,b]:
 (A) Between a = 10:00 a.m. and b = 11:00 a.m. 
 (B) Between a = 10:30 a.m. and b = 11:30 a.m. 
There is only one back calculation value t^, but we present three versions 
(1), (2), (3) of this value in three cases of an estimator bias e.g. by 
measurement errors of the ambient temperature T

A
, - of the rectal 

temperature T
0
 at time of death or by nonstandard conditions, which were 

not taken into account by choosing an adequate corrective factor cf. In each 
one of the three alternatives, TDE backcalculation produces an estimated 
value t^, which lies outside the interval [c,d]:

 (1) t^ = 9:00 a.m.
 (2) t^ = 7:00 a.m.
 (3) t^ = 5:00 a.m.

We compute the conditional probability P = PΔt
(t ϵ [a,b] | t^, t ϵ [c,d]) for each 

of the six possible combinations of [a,b] and t^ without taking into account 
the estimators bias Δt which is mostly unknown in real casework. This yields 
the following results:

(A)^(1)

(A)^(2)

(A)^(3)

(B)^(1)

(B)^(2)

(B)^(3)

It is of some interest to have a look at the erroneous posterior probability P 
= PΔt

(t ϵ[a,b] | t^, t ϵ [c,d]) for different values of the bias Δt. Since the bias 
is unknown in this situation, we present plots of the probability P as functions 
of Δt for scenario (A) in figure 1 and for scenario (B) in figure 2 where we 
assume a ‘true value’ (which means an unbiased value) of t^ = 9:00 a.m. to 
be able to compute P.

In scenario (A) the P value falls from 1 down to 0 in an S-shaped curve 
crossing the x-axis at 0.678 while the Δt values rise from -10 h up to 10 h 
(figure 1). The result of scenario (B) over an interval [-8 h, 8 h] of biases Δt is 
a peak of P rising moderately from left to right from ca. P = 0.1 to a maximum 
value of P = 0.45 at Δt = 1 h. The curve then takes a steeper course down 
to a value of ca. P = 0.005 at Δt = 8 h (figure 2).

The figures 1 and 2 illustrate the two types of scenarios possible for the long 
range biases:

(A) Equal lower limits a = c of the two intervals [a,b] and [c,d]:

     PΔt rises for lower negative values of the bias Δt to 1.  

    PΔt  falls for higher positive values of the bias Δt to 0.  

(B) Different lower limits a > c and b < d of the two intervals [a,b] and [c,d]:

    PΔt falls for higher positive and for lower negative values of the bias Δt to 0.  

    PΔt reaches a maximum for a value of the bias Δt near 0 h.

Figure 1: Scenario (A): Probability PΔt
 caused by bias Δt in the

interval [-10 h, 10 h]
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5 Discussion

This paper presents an investigation of the influence of likelihood shifts on 
the results of BE. It was inspired by a work [1] of Biermann and Potente 
from 2011 who intended their Bayesian approach - which they called 
Conditional Probability Distribution (CPD) method - to calculate probabilities 
for time intervals in temperature based death time determination.

We analyze the important cases of large systematic errors in the BE input. 
Systematic errors which result in biases Δt can lead to major deviations of 
the estimated probabilities. The analysis of the large bias cases reveals that 
the set A of all pdds investigated (for a definition see: (A1), (A2), (A3)) is 
divided into three disjoint subsets according to three families of asymptotic 
limit distributions which are in a one to one correspondence to the three 
possible range sets for the AAL-values: A±[f](d-c) in {0}, {1}, ]0,1[ U 
]1,+∞[.

In the cases (1b) of proposition 3.1 only the position of the interval [a, b] 
of interest in the large 100% interval matters: For large biases Δt → +∞ 
(which is equivalent to the expectation E(t^) of the estimator t^ being shifted 
to -∞ if the interval [c,d] is considered fixed) the conditional probability of 
[a, b] under the condition of the backcalculated value t

D
 tends to the limit 1 

if a = c and to the limit 0 if c < a. For a large negative bias Δt → -∞, the 
situation is vice versa: The limit is 1 if b = d and 0 if b < d. This establishes 
the paradox that a huge bias can make the probability of an interval higher, 
the farer the estimated value t^ lies away from this interval.

Case (2) of proposition 3.1 shows a dependency on the relative length of 
the interval [a,b] in the interval [c,d] but no dependency on the position of 
the interval [c,d] in IR or on the position of [a,b] in the larger interval [c,d]. 
In case (1a) of proposition 3.1 shows there is a dependency on the absolute 
position of c, d as well as on the absolute position of a, b in IR.

The fact that large biases can lead to dramatic overestimation of partial 
intervals establishes a warning post for practical work using Bayesian 
estimation approaches as e.g. the CPD method. The probabilities calculated 
are useful only in case the likelihood probability P(t^ | t) is unbiased.

We illustrated the importance of the issue by a forensic science example 
(E) representing a typical error induced in the results of the CPD method 
by a TDE bias. Example (E) was designed to demonstrate the typical 
sensitivness of Bayesian estimation to biases in the likelihood probability 
P(t^ | t) used. TDE, having a Gaussian likelihood, implies case (1b) of 
proposition 3.1 in CPD. 

From an abstract point of view, the result can be interpreted as a 
classification of asymptotic conditional probability distributions induced on 
a bounded interval by the far tail of a probability distribution which can be 
chosen from a wide range containing many probability distributions which 
are important in science statistical problems.

Up to now we are not aware of any further applications of our results apart 
from the usage in death time determination. In the latter case the approach 
resolved merely a misunderstanding than yielding a new statistical method. 
There is no concrete statistical application to our knowledge yet, but we 
believe that our mainly theoretical article might stimulate further statistical 
applications. Particularly the classification result could be used for designing 
tests which can differentiate between classes of probability distributions 
by using samples from their far tails only. This might be interesting for 
experimental researchers if they can access the far tails of a distribution only 
for experimental or financial reasons.

Figure 2: Scenario (B): Probability PΔt
 caused by bias Δt

            in the interval [-8 h, 8 h]
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