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According to the article, the NCI-DREAM Drug Sensitivity Prediction 
problem has been persistent for long; nonetheless, several models and 
algorithms have developed to tackle its two major sub-challenges [1]. The 
model includes a weighted Euclidean distance technique that is used to make 
a prediction as well as ranking the combination of drug especially their ability 
to neutralize the capability of a diffuse large B-cell lymphoma (DLBCL) cell 
line [2]. Similarly, the other technique is a bidirectional search algorithm 
that uses a nonlinear support vector machine (SVM) and a common scheme 
to predict how the drug compounds can impact the breast cancer cell lines 
[3]. The bidirectional search algorithm or greedy search algorithm usually 
makes a combination of the advantages of the support vector machine or 
kernel techniques as well as the ensemble modeling to correctly make a 
prediction of the sensitivity of the breast cancer cell lines to drug compounds 
which were formerly not tested [4]. Current composite models used to 
predict drug sensitivity use basic algorithms to extract traits from one type 
of data set [5]. Alternatively, the researcher created an ensemble model (as 
shown in figure 1 below) that was used in extracting features from different 
kind of datasets such as DNA copy number disparity, DNA methylation, 
RNA-seq, gene expression, proteomic data) as opposed to the use of 
diverse base algorithms on one form of datasets [6]. The researchers used 
similar base learning algorithms on the five different kinds of datasets [7].

Cancer is regarded as the causative factor of death globally, the 
development of drug compounds to target cancer cell and provide 
treatment has highly been prioritized [8]. Nonetheless, the discovery of 
cancer therapies is regarded as challenging, costly, and time consuming 
pharmaceutical venture since it entails various clinical evaluations and 
developmental phases [9]. Currently, simulation and computational 
models are increasingly preferred to make prediction of the reaction of 
the cancer cell lines to drug compounds to drug development or discovery 
process [10]. Such models are significantly helpful in improving the 
process of designing drugs as well as tackle several problems experienced 
throughout the process that assists in establishing the drug variations [11].

Furthermore, the researchers argue that the process of determining successful 
lead drug candidates used in treating cancer can greatly capitalize from such 
methods used to make prediction of how cancer cell lines are sensitive to 
drug compounds [12]. Time-series in addition to static conditional gene 
expression data are widely used to build the silicon models or predictors [13].  
Statistical methods, for instance, a combination or integration of random 
forest and regression analysis have been used to manipulate gene expression 
data obtained from cancer cells which have treated with diverse drug 
compounds to predict of the capacity of the drugs to effectively stop cancer 
cell lines’ proliferation [14]. Additionally, researchers have exploited gene 
expression datasets using the Naïve Bayes classifiers the sequencing data and 
chromosomal copy number difference obtained from human cancer lines which 
undergo treatment using twenty-four anticancer drugs to make a prediction 
of the capacity of the drugs to constrain their propagation [15]. Equally, gene 
expression data of sixty human cancer cell lines have been examined using 
a weighted voting classification model to foresee the drug reactions [16].

Moreover, the researchers combined random forest and nearest neighbor 
methodology to manipulate proteomic data to predict of the drug response of 
the cell lines [17]. In addition, a weighted voting algorithm which is created 
through the use of a set of genes which have been expressed differentially 
was used to accurately group 80 percent of the twenty-six samples to assess 
the effectiveness of the Docetaxel (an anticancer drug) in treating breast 
cancer [18, 19]. Majority of the statistical methods are variedly applied to 
the sequencing, gene expression, and proteomic data to determine how the 
cancer cell lines usually react to medication [20]. Therefore, review of the 
article reveal that current practice of making prediction about the cancer cell 
lines’ sensitivity to the drugs can greatly be enhanced by using the ensemble 
models [21]. The researchers wanted to determine how the diverse forms 
of data can be relied on more correct prediction of the reaction of cancer 
cell lines to the drug compounds [22]. The research has greatly added 
new knowledge especially with how the ensemble methods can be used 
in capturing and extracting significant features from the diverse kinds of 
biological data [23, 24].
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Furthermore, the simplified weighted Euclidean distance measure can be 
applied since it has high potential of attaining reasonable outcomes as well 
as more advanced statistical/similarity evaluations of making predictions 
about the reaction of cancer cell lines to a mixture of drug compounds 
[25]. The study can significantly help to introduce significant therapeutic, 
pharmacological, and clinical changes which can prove beneficial in 
improving the drug development process since it facilitates the detection of 
successful lead drug candidates used to treat the diverse types of cancer [26].
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