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Abstract

Uterine carcinosarcoma (UCS) are aggressive neoplasms consisting of high-grade malignant epithelial and mesenchymal elements. UCS represent less 
than 5% of all uterine malignancies. In the US, approximately two in 100,000 women develop UCS annually. At the time of diagnosis, approximately 
one-third of patients have disease that has spread beyond the uterus. The survival percentage for patients with UCS projected at 5 years from the time 
of diagnosis is 40% to 75% for neoplasia confined to the uterus. Uterine carcinosarcoma is a cancer with high frequency of mutations specifically 
insertion and deletion polymorphisms such as Copy Number Alterations (CNA) linked to messenger Ribonucleic Acid (mRNA) transcripts. In this work 
was carried out omic data integration using CNA genomic data and transcripts from mRNA sequence counts from 57 American patients with different 
levels of infiltration and invasiveness of UCS analyzing 16383 genes and 60488 transcripts separately. For analyzing CNA genes, Component Principal 
Analysis (PCA) was carried out and for analyzing mRNA sequences counts, Differential Expression Analysis was carried out. After CNA and mRNA 
separately analysis, 36 genes and 96 transcripts highly significant were found, which were used in the integration analysis. Integrative analysis was 
carried out using Sparse Least Square (sPLS) methodology using mixOmics package in R software. Integrative analysis was based on graphical analysis 
from two output plots. Samples graphical representation, from RNAseq and CNA data show the clustering between samples. On RNAseq, samples 
showed clustering around central zero of all types of tumors, without clear separation between them. This indicates variance of different samples is 
not explained by the transcripts (genes). Clusters top and bottom of central zero especially tumor with most infiltration and invasiveness explained the 
most proportion of variance. On CNA genes, samples showed clear separated clustering’s according with types of tumors. Tumor of less infiltration 
and invasiveness were clustered more closely near of central zero and tumor with most infiltration and invasiveness were clustered more closely away 
from central zero. Many samples were clustered very closely at central zero especially samples belonging tumors with less infiltration and invasiveness 
indicating some CNA genes have a weak influence on tumors with less infiltration and invasiveness. Samples from both RNAseq and CNA genes showed 
a strong negative correlation between them. Tumors with more infiltration and invasiveness showed high dispersion under the central zero, while tumors 
with less infiltration and invasiveness shows moderate dispersion above the central zero. This indicates both types of genes mRNA transcripts and CNA 
genes are highly expressed in aggressive tumors. According to genes graphical representation, three important CNA genes were highly expressed, TPM3, 
tropomyosin 3, RPS27 ribosomal protein S27 genes, both located on chromosome 1 and ACTR1A, Alpha-centractin gene located on chromosome 10 
was seen keeping direct positive correlation with the transcript ENG00000122145 human transcript located on Chromosome 16. On RNAseq genes, four 
genes5 were highly expressed, ENSG00000143028 (SYPL2, Synaptophysin-like protein 2) human gene located on  Chromosome 1; ENSG00000077522 
(ACTN2, alpha actinin-2) human gene also located on Chromosome 1; ENSG00000086967 (MYBPC2, Myosin-binding protein C) human gene located 
on Chromosome 19 and ENSG00000253767 (PCDHGA8, Protocadherin gamma-A8) human gene located on Chromosome 5. The results showed a high 
correlation between CNA and mRNA genes, indicating that copy number alteration also results in differential gene expression in uterine carcinosarcoma.
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Introduction

Uterine carcinosarcoma (UCS) is a cancer developing in uterus. 
Carcinosarcoma means that, tumor shows both histologic features 
endometrial carcinoma and sarcoma. Endometrial carcinoma begins into 
endometrium (inner uterus layer) while sarcoma begins in uterus outer 
muscle layer [1]. Uterine carcinosarcoma (UCS) are rare but aggressive 
neoplasms consisting of high-grade malignant epithelial and mesenchymal 
elements, representing less than 5% of all uterine malignancies. In the 
United States of America, approximately two in 100,000 women develop 
UCS annually [2]. 

In different studies, influence of genes on uterine carcinosarcoma expression 
has been demonstrated. Mutations in the TP53 gene (Tumor Protein 53, 
acts as a tumor suppressor: tumor cell antigen) and low frequency in 
the FBXW7 genes (F-box / WD repeat-containing protein 7, mediates 
ubiquitination and subsequent proteosomal degradation of target proteins), 
PIK3CA (Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit 
alpha isoform, participates in cell signaling in response to various growth 
factors.) And PPP2R1A (Serine/threonine-protein phosphatase 2A 65 kDa 
regulatory subunit A alpha isoform, regulates transcription and intervenes 
in RNA splicing) [3]. In a more recent publication, Zhao et al. [4] found a 
lower frequency of mutations in the TP53 and FBXW7 genes of 24 normal 
non-hypermuted UCS tumor exomes.

Genomic data refer to mutations into genome such as Copy Number 
Variation (CNV) that are short nucleotide’s chain (2 – 4 nt) into genomic 
DNA known as Indel (insertions, deletions, or amplifications), they are 
polymorphisms located in genomic DNA of germinal cells, oocytes, and 
sperm. But when these mutations are present in somatic cells, they are 
called Copy Number Alterations (CNA) [5]. CNV have been associated 
in humans with different diseases, especially with psychiatric disorders 
such as schizophrenia [6] Xu et al., while CNA have been associated with 
various types of cancer [7].

Transcriptomic data refer to transcript elements or Ribonucleic Acid (RNA) 
universe (i.e., micro-RNA (miRNA), transfer RNA (tRNA) and ribosomal 
RNA (rRNA)), it´s deeply complex, and new isoforms of known genes 
and short RNA species continue to be discovered, such as microRNAs 
(miRNAs) and enhancer RNAs. Previous and de novo identified transcripts 
of many genes have been associated with expression of certain types of 
cancer Cherniack et al. [8] and have shed light based on complex traits such 
as personality or physiological response to catastrophic events [9].

Developing data integration models of data described above it can explore the 
dynamic interconnectivity of biological systems during pathophysiological 
relevant processes in order to cover as much information as possible that 
explains better functioning at the molecular level. Integration of genomic 
and transcriptomic data approach enables understanding of disease processes 
such as cancer in a “biological pathway” rather than a “single molecule” 
level and accelerate progress toward disease-modifying interventions [10].

The modern trend towards personalization medicine explains the importance 
of prevention and personalized treatment of diseases that occurs because 
of molecular integration of genomic, transcriptomic, metabolomic and 
proteomic factors, leaving behind the idea of individual metabolic actions 
are causing of disease [11].

Methods and Material 

Patients and Study Location

Samples were extracted from uterine tumor cells and from normal 
surrounding cells of 57 women with UCS as well as from normal blood cells 
for CNAs, however, for mRNA only samples were taken uterine cell, from 
the Nationwide Children’s Hospital and research center in Ohio, United 
States of America [12].

Data Source

Data were obtained from The Cancer Genome Atlas (TCGA) repository, 
Project ID: TCGA-UCEC; dbGAPStudy accession: phs000178 (http://gdac.
broadinstitute.org/), from the Broad Institute Genomic Data Analysis Center, 
(2016). All samples were processed in this center to obtain significant genomic 
events such as Copy Number Alterations (CNA) and transcriptome events 
such as RNAseq (mRNA) counts, for determining statistical association with 
important variables (genes) inherent to uterine carcinosarcoma [13].

Genomic Data: Copy Number Alterations (CNA)

Copy number variation (CNV) uses data from the Affymetrix SNP 6.0 matrix 
to identify genomic repeating regions and infer the copy number of these 
repeats. The chip outputs are processed from the TCGA using the DNAcopy 
R package to perform an analysis of circular binary segmentation (CBS) [14]. 
CBS translates noisy intensity measurements into chromosomal regions of 
equal copy number. The final output files are segmented into genomic regions 
with the estimated copy number for each region. Then, Genomic Data 
Commons (GDC) further transforms these copy number values into segment 
mean values, which are equal to log2 (copy number / 2). Diploid regions will 
have a segment mean of zero, amplified regions will have positive values, 
and deletions will have negative values (Genomic Data Commons, https://
gdc.cancer.gov/).

CNA data are collected in 3 tables: First Table, Copy Number Segment 
associates to the contiguous chromosomal segments with genomic 
coordinates, average intensity of the array and the number of probes that bind 
to each segment (see Table 1). Second table, Masked Copy Number Segment 
with the same information as copy number segment, except segment with 
probes known to contain germline mutations are removed. Third, Copy 
Number Estimated table shows gains and losses at the gene level, generated 
from the table above.
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/

Numerical copy number variation (CNV) values at the focal level, were 
generated from “copy number segment files from which germline mutations 
were removed” from tumor aliquots using GISTIC2 [15,16] at the project 
level. Only genes encoding proteins were kept, and their numerical CNV 
values were further limited by a limit of noise of 0.3: Genes with focal CNV 
values less than -0.3 are classified as “loss” (-1); genes with focal CNV 
values greater than 0.3 are classified as “gain” (+1) and genes with values of 
Focal CNVs between -0.3 and 0.3 are classified as “neutral” (0) (see Table 2).
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Data used in the present study were derived from the Copy Number 
Estimated table, extracted from TCGA.

Figure 1. Sample’s coding. TCGA: The Cancer Genome Atlas; N5: Sample of patients with uterine carcinosarcoma from MSKCC 
(Memorial Sloan Kettering Cancer Center); A4R8: Patient identification; 10A: Samples with code “10” correspond to samples derived 
from normal blood from patients with cancer, letter “A” means that sample is labeled on the first container or vial A; 01D: Portion in 
milligrams of sample or first portion, letter “D” means Deoxy Ribonucleic Acid (DNA); A28T: Wells Chip DNA identification; 01: Code 
of the center that received the sample for analysis, in this case 01: corresponds to the Broad Institute of MIT and Harvard.

Coding of CNA Samples According TCGA

CNA samples of this study from the TCGA repository generally have the 
following encoding (see Figure 1).

Transcriptome Data: RNAseq (mRNA Counts)

mRNA quantification analysis measures expression at the gene level. 
Samples were processed by TCGA institute using Illumina HiSeq_2000 chip 
technique, subsequently, HTSeq program (High Throughput Sequencing, 
high-performance sequencer) is used to generate two files of raw reads: “raw 
read count”: the reads of fragments per kilobase of transcripts (Fragment 
per Kilobase of transcript per Million mapped read, FPKM ) and the upper 
quartile normalization readings (FPKM-UQ, upper quantile) [17, Anders S

and Zanini F]. But before generating these values, reads are aligned with 
tGRCh38 reference human genome and then mapped reads are quantified. 
Alignment is performed following the methods used by the International 
Cancer Genome Consortium (ICGC) (https://icgc.org/). Finally, mapped 
reads of each gene are enumerated using the HT-Seq-Count program, thus 
generating “counts” file as described in Table 3.

Table 1 Copy Number Segment

Table 2 Copy Number Estimated

Rows represents samples (patients’ identification) according to The Cancer genome Atlas (TCGA). Also, chromosomes with start and end of regions 
where segment mean was identified

Copy Number Alterations. Rows represents genes and Colom’s represents samples (patients’ identification) according to The Cancer genome 
Atlas (TCGA). Rows represents genes. Columns represent aliquots, which are associated with categorizations of Copy Number Alterations values 
(insertion=1, deletion=-4 and neutral=0) for each gene.

Sample Chromosome Start End Num_Probes Segment-Mean

TCGA-N5-A4R8-10A-01D-A28T-01 1 61735 3003488 666 0.0141

TCGA-N5-A4R8-10A-01D-A28T-01 1 3004357 3026260 6 -1.807

TCGA-N5-A4R8-10A-01D-A28T-01 3 75578858 84702413 5009 -0.0024

TCGA-N5-A4R8-10A-01D-A28T-01 3 84702463 84702600 2 -1.5993

TCGA-N5-A4R8-10A-01D-A28T-01 3 84706284 98944632 5989 0.005

TCGA-N5-A4R8-10A-01D-A28T-01 3 98944763 9894472306 44 0.3475

Gene Symbol Gene ID Cytoband TCGA-N9-A4C TCGA-N9-A4G TCGA-NA-A5T TCGA-NF-A4X TCGA-N5-A4RX

ENSG00000008128.21 0 1p36.33 0 -1 -1 0 1

ENSG00000008130.14 0 1p36.33 0 -1 -1 0 1

ENSG00000007606.14 0 1p36.33 0 -1 -1 0 1

ENSG00000078369.16 0 1p36.33 0 -1 -1 0 1

ENSG00000078808.15 0 1p36.33 0 -1 -1 0 1

ENSG00000107404.16 0 1p36.33 0 -1 -1 0 1

ENSG00000116151.12 0 1p36.32 0 -1 -1 0 1

ENSG00000127054.17 0 1p36.33 0 -1 -1 0 1
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Data Preparation

Previously to the integrative analysis, was carried out analysis in both 
omics separately.

Copy Number Alterations (CNA)

CNA data were directly downloaded from TCGA repository using the 
function GDCquery from TCGAbiolinks and TCGAutils libraries in R.

Thus, is obtained one file named “scores” with genes and their CNAs for each patient in the tumor samples (see Table 4).

Columns indicate samples with their respective count of the mRNA sequences identified in each gene (rows). Data downloaded from TCGA. Project 
ID: TCGA-UCEC; dbGAPStudy accession: phs000178

Table 4. Copy Number Alterations. Genes and Patients with original code.

Rows represents genes and columns from three onwards, represents patients (samples).

Table 4 First five rows from downloaded data (scores):

A Heatmap was carried out to understand better the original data:

Table 3. RNA-seq counts. Patients with Uterine Carcinosarcoma

X1
<chr>

TCGA-N5-A4R8-01A-11R-A28V-07
<dbl>

TCGA-N5-A4RA-01A-11R-A28V-07
<dbl>

ENSG00000000003.13 2610 1673

ENSG00000000005.5 552 5

ENSG00000000419.11 6718 2284

ENSG00000000457.12 1034 567

ENSG00000000460.15 802 663

ENSG00000000938.11 252 96

library (ComplexHeatmap
library(dplyr)
scores. matrix <- scores %>% 
  dplyr::select(-c(1:3)) %>%  # Removes metadata from the first 3 columns
  as. matrix
rownames (scores. matrix) <- paste0(scores$`Gene Symbol`,”_”, scores$Cytoband)
# gain in more than 100 samples
gain. more.than.hundred.samples <- which(rowSums(scores.matrix == 1) > 100)
# loss in more than 100 samples
loss. more.than.hundred.samples <- which(rowSums(scores.matrix == -1) > 100)
lines. selected <- c (gain. more.than.hundred.samples,loss.more.than.hundred.samples)
Heatmap (scores. matrix [lines. selected,],
        show_column_names = FALSE, 
        show_row_names = TRUE,
         row_names_gp = gpar (fontsize = 8),
        col = circlize::colorRamp2(c(-1,0,1), colors = c(“red”,”white”,”blue”)))

query <- GDCquery (project = “TCGA-UCS”,
             data. category = “Copy Number Variation”,
             data. type = “Gene Level Copy Number Scores”,              
             access = “open”)

scores [1:5,1:5]

Gene Symbol
<chr>

Gene ID
<dbl>

Cytoband
<chr>

TCGA-N9-A4Q7-01A-11D-
A28Q-01
<dbl>

TCGA-N9-A4Q8-01A-31D-
A28Q-01
<dbl>

ENSG00000008128.21 0 1p36.33 0 -1

ENSG00000008130.14 0 1p36.33 0 -1

ENSG00000067606.14 0 1p36.33 0 -1

ENSG00000078369.16 0 1p36.33 0 -1

ENSG00000078808.15 0 1p36.33 0 -1
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ENSG00000146648 .14 gene on the first top line of the heatmap it is located 
on chromosome 7 in region 55,019,017-55,211,628 bp (Ensembl database) 
identified like EGFR (Epidermal growth factor receptor Epidermal growth 
factor receptor) in UNIPROT (Uniprot database) with code P00533. 
This gene encodes tyrosine kinase receptors. Mutations of this gene have 
been associated with lung cancer (https://www.newsmedical.net/health/
LungCancer Genetics).

For developing a better analysis, were manually modified rows and columns 
in scores file. On Table 4 numbers after dot in column “Gene Symbol” were 
deleted and the column of patients with original code was replaced by short 
participant’s code (see Table 5).

Rows represents genes and columns from three onwards, represents patients (samples).

Figure 2. Upper blue bands indicate cluster of genes with insertions (+ 1). Red bands indicate cluster of with deletions (-1) and blank 
bands represent genes without deletions or insertions. Most of them are genes located in chromosome 7 and 12: ENSG00000146648.14, 
ENSG00000132432.12, ENSG000001324348, ENSG0000015497811, ENSG00000170419 9, ENSG000001392665, ENSG0000013 
5446.15, EN SG0 0000135439.10.

Table 4. Copy Number Alterations. Genes and Patients with original code.

Numbers of gene after dot were deleted. Patients ID was cropped.

Table 5. Copy Number Alterations. Genes and short patients’ identification.

Gene Symbol
<chr>

Gene ID
<dbl>

Cytoband
<chr>

TCGA-N9-A4Q7-01A-11D-
A28Q-01
<dbl>

TCGA-N9-A4Q8-01A-31D-
A28Q-01
<dbl>

ENSG00000008128.21 0 1p36.33 0 -1

ENSG00000008130.14 0 1p36.33 0 -1

ENSG00000067606.14 0 1p36.33 0 -1

ENSG00000078369.16 0 1p36.33 0 -1

ENSG00000078808.15 0 1p36.33 0 -1

Gene_ID
<chr>

A4PO
<chr>

A4Q1
<chr>

A4X2
<chr>

A4QY
<chr>

1 ENSG00000008128 -1 -1 0 0

2 ENSG00000008130 -1 -1 0 0

3 ENSG00000067606 -1 -1 0 0

4 ENSG00000078369 -1 -1 0 0

5 ENSG00000078808 -1 -1 0 0

Matrix_10
         1
         0.5
         0
         -0.5
         -1

myscores<-read.csv (“C:/Users/CRISTOBAL DE LEON/Documents/
GDCdata/myscores_p.csv”, header = TRUE, sep = “;”)
myscores<-as.data. frame(myscores)
head(myscores)



Enliven Archive | www.enlivenarchive.org

 
 
2021 | Volume 9| Issue 36

An important characteristic of these data is that each patient is categorized 
according to infiltration degree and tumor invasiveness. This classification 
is performed by FIGO (International Federation of Gynecology and 
Obstetrics) [18]. Table 6 show FIGO´classification according to infiltration 
degree and tumor invasiveness in each patient.

FIGO classification is used to replace the columns, Patiens_id, by infiltration 
and invasiveness degree of tumor (Table 7).

Columns and rows on Table 7 were manually rotated. FIGO classification is 
now in raws. This transposition will later facilitate the Principal Component 
Analysis.

Table 6 Samples classification according to infiltration degree and tumor invasiveness.

Stage I, the tumor is in the organ where it originally formed; Stage II to IV, the tumor spreads to tissues beyond the organ of origin; A, B and C 
indicate infiltration degree and tumor invasiveness: A, tumor is loca
in a part of the organ, B, the tumor is infiltrated in healthy neighboring cells of the organ of origin; C, tumor invades neighboring tissues or organs. 
Source: Clinical Data (NHI, 2012):
(https://training.seer.cancer.gov/staging/systems/schemes/figo.html)

Table 7. Copy Number Alterations. Patients replaced by FIGO stages classification

6 rows | 1-10 of 56 columns

patient_ID figo_stage patient_ID figo_stage patient_ID figo_stage patient_ID figo_stage patient_ID figo_stage

A4PO II A59B IA A5NN IB A4VG IVB A4R1 IIIC1

A4Q1 II A4Q7 IA A4WC IB A4RM IVB A4PN IIIC1

A4X2 II A4Q3 IA A56S IB A4QX IVB A4RT IIIC1

A4QY III A5NM IA A4PM IB A4Y8 IVB A4PQ IIIC2

A4VC III A4PI IA A4QV IB A4R0 IVB A4RA IIIC2

A4WX IV A4PL IA A4Y5 IIB A4WA IC A4RO IIIC2

A4RV IA A4QW IIA A5I1 IIIB A4VW IC A4PZ IIIC2

A4WU IA A4VD IIIA A4VU IIIB A4Q4 IIIC A5CP IIIC2

A4RF IA A4WF IIIA A4RD IVB A4W6 IIIC A4RU IIIC2

A4R8 IA A4VF IB A59E IVB A4VE IIIC

A4V9 IA A4RS IB A4RN IVB A4Y0 IIIC

A4Q8 IA A59F IB A4RJ IVB A4PP IIIC1

Gene ID
<chr>

II
<int>

II
<int>

II
<int>

III
<int>

III
<int>

IV
<int>

IA
<int>

IA
<int>

1 ENSG00000008128 -1 -1 0 0 -1 0 1 0

2 ENSG00000008130 -1 -1 0 0 -1 0 1 0

3 ENSG00000067606 -1 -1 0 0 -1 0 1 0

4 ENSG00000078369 -1 -1 0 0 -1 0 1 0

5 ENSG00000078808 -1 -1 0 0 -1 0 1 0

6 ENSG00000107404 -1 -1 0 0 -1 0 1 0

myscores<-read.csv (“C:/Users/CRISTOBAL DE LEON/Documents/GDCdata/myscores_t.csv”, header = TRUE, sep = “;”)
head(myscores)

Table 8. Copy Number Alterations. Columns are variables (genes) and rows are Patients.

6 rows | 1-9 of 16384 columns

Patients_ ID
<chr>

ENSG0000
0008128
<int>

ENSG00000
008130
<int>

ENSG0000
0067606
<int>

ENSG0000
0078369
<int>

ENSG000
00078808
<int>

ENSG000
00107404
<int>

ENSG000
00116151
<int>

1 II -1 -1 -1 -1 -1 -1 -1

2 II -1 -1 -1 -1 -1 -1 -1

3 II 0 0 0 0 0 0

4 III 0 0 0 0 0 0 0

5 III -1 -1 -1 -1 -1 -1 -1

6 IV 0 0 0 0 0 0 0
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Matrix M contains 55 rows (patients according with tumor FIGO classification) and 16384 genes (variables).

After some application codes on matrix M, it obtains matrix M.na for PCA analysis 

The goal of PCA is to identify directions (or principal components) along which the variation in the data is maximum. In other words, PCA reduces the 
dimensionality in multivariate data in two or three principal components with minimal loss information.

From this analysis it can see the most variance explained by first 6 components:

## [1]    55 16384

set. seed (9091)
na.row<-sample (1: nrow(M), replace = TRUE)
na.col<-sample (1: ncol(M), replace = TRUE)
M.na<-as. matrix(M)
M.na<-M.na [, -1]

dim(M.na)
## [1]    55 16383

pca.CNA<-PCA (M.na, scale. unit = TRUE, ncp = 56, graph = F)
pca.CNA

head(pca.CNA$eig)

## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 55 individuals, described by 16383 variables

eigenvalue percentage of variance cumulative percentage of variance
comp 1 1067.5406               6.531298                          6.531298
comp 2 1000.5367               6.121362                         12.652660
comp 3  844.4412               5.166358                         17.819018
comp 4  798.3566               4.884409                         22.703426
comp 5  732.2390               4.479896                         27.183322
comp 6  664.5490               4.065764                         31.249086

M<-read.csv (“C:/Users/CRISTOBAL DE LEON/Documents/GDCdata/myscores_t.csv”, header = TRUE, sep = “;”)
M<-as.data. frame(M)
dim(M)

Principal component analysis (PCA) for Copy Number 
Alterations data:

PCA were carried out to obtain the most significant genes that will be used 
later for integrating with RNAseq data.

First, it has been built the matrix M from myscores file in R:
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First and second component corresponds to the addresses with the 
maximum amount of variation in data set. It is seen that first component

The most significative genes from the first and second component were obtained (Tables 9 and 10 respectively), for that, is used the function dimdesc 
from factoextra and FactoMineR libraries in R 

Table 9. Significative genes by first component   

retains the highest variation, (6.53%) and the second component 6.12%. 
Graphic representation on Figure 3:

Figure 3. Principal Component Analysis. The highest percentage of variance is explained by the first and second components (11.6%) 

Scree plot
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fviz_eig (pca.CNA, addlabels = TRUE, ylim = c (0, 50))

res. desc <- dimdesc (pca.CNA, axes = c (1,2), proba = 0.05)
res. desc$Dim.1

res. desc <- dimdesc (pca.CNA, axes = c (1,2), proba = 0.05)
res. desc$Dim.2

Gene_ID Correlation p-value

ENSG00000204365 0.76539 1.01e-11

ENSG00000156398 0.7150537 8.62e-10

ENSG00000138175 0.7150537 8.62e-10

ENSG00000171206 0.7150537 8.62e-10

ENSG00000107882 0.7150537 8.62e-10

ENSG00000138107 0.7150537 8.62e-10

ENSG00000138111 0.7150537 8.62e-10

ENSG00000151532 0.6992983 2.87e-09

ENSG00000109452 0.6583856 4.67e-08

ENSG00000170153 0.6583856 4.67e-08

ENSG00000109436 0.6583856 4.67e-08

ENSG00000189184 0.6583856 4.67e-08

ENSG00000254535 0.6583856 4.67e-08

ENSG00000138650 0.6583856 4.67e-08

ENSG00000151470 0.6583856 4.67e-08



Enliven Archive | www.enlivenarchive.org

 
 
2021 | Volume 9| Issue 39

Gene_ID Correlation p-value

ENSG00000143515 0.8450245 5.00e-16

ENSG00000143575 0.8450245 5.00e-16

ENSG00000143569 0.8450245 5.00e-16

ENSG00000143612 0.8450245 5.00e-16

ENSG00000163263 0.8450245 5.00e-16

ENSG00000143549 0.8450245 5.00e-16

ENSG00000177954 0.8450245 5.00e-16

ENSG00000118217 0.8176596 2.58e-14

ENSG00000160716 0.7882102 9.16e-13

ENSG00000160714   0.7882102 9.16e-13

ENSG00000163239   0.7882102 9.16e-13

ENSG00000169291   0.7882102 9.16e-13

ENSG00000160712   0.7882102 9.16e-13

ENSG00000143595   0.7882102 9.16e-13

ENSG00000215853   0.7882102 9.16e-13

ENSG00000159450   0.7882102 9.16e-13

ENSG00000182898   0.7882102 9.16e-13

ENSG00000163191   0.7882102 9.16e-13

ENSG00000014914   0.7882102 9.16e-13

ENSG00000143368    0.7882102 9.16e-13

ENSG00000280649   0.7882102 9.16e-13

Table 10. Significative genes by second component

A final file of most significative (CNA genes) is manually built (Table 11) 
by further integration with RNAseq data.

Table 11. Copy Number Alterations of most significative genes 

6 rows | 1-9 of 37 columns

Gene’s symbol and its function was sought after in ENSEMBL and 
UNIPROT database (Table 12) On Table 13 gene identifications are 
represented by gene symbol

Patients_ ID
<chr>

ENSG00000
0204365
<int>

ENSG0000
00156398
<int>

ENSG00000
0138175
<int>

ENSG00000
0171206
<int>

ENSG0000
00107882
<int>

ENSG0000
00138107
<int>

ENSG0000
00138111
<int>

1 II 0 -1 -1 -1 -1 -1 -1

2 II 0 0 0 0 0 0 0

3 II 0 0 0 0 0 0 0

4 III 0 0 0 0 0 0 0

5 III 1 0 0 0 0 0 0

6 IV 0 0 0 0 0 0 0
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Gene_ID Gene_Symbol Chromo-
some

start end Function Diseases

ENSG00000204365 C10orf126 10 28,846,408 28,881,898 Uncharacterized protein

ENSG00000156398 SFXN2 10 102,714,538 102,743,492 Mitochondrial amino-acid trans-
porter that mediates transport of 
serine into mitochondria.

ENSG00000138175 ARL3 10 102,673,731 102,714,397 Small GTP-binding protein 
which cycles between an inac-
tive GDP-bound and an active 
GTP-bound form

Joubert syndrome 
(cerebellar ataxia) 
and Retinitis 
pigmentosa

ENSG00000171206 TRIM8 10 102,644,479 102,658,318 E3 ubiquitin-protein ligase 
that participates in multiple 
biological processes including 
cell survival, differentiation, 
apoptosis, and in particular, the 
innate immune response

TRIM8 deficiency 
leads to increased 
polyinosinic-
polycytidylic acid– 
and LPS-triggered 
induction of 
downstream anti-
microbial genes 
including TNF

ENSG00000107882 SUFU 10 102,503,972 102,633,535 It is a sulfotransferase rather 
than a scaffold assembly protein

ENSG00000138107 ACTR1A 10 102,461,881 102,502,712 Component of a multi-subunit 
complex involved in microtu-
bule-based vesicle motility. ATP 
binding

ENSG00000138111 MFSD13A 10 102,461,395 102,477,045 Transmembrane protein

ENSG00000151532 VTI1A 10 112,446,998 112,818,744 Vesicle trafficking and to pro-
mote fusion of the lipid bilayers

ENSG00000109452 INPP4B 4 142,023,160 142,847,432 Plays a role in the late stages of 
micropinocytosis by dephos-
phorylating phosphatidylinositol 
3,4-bisphosphate in mem-
brane ruffles. Antagonizes the 
PI3K-AKT/PKB signaling 
pathway by dephosphorylating 
phosphoinositide’s and thereby 
modulating cell cycle progres-
sion and cell survival 

Reduced INPP4B 
expression is 
associated with 
poor outcomes for 
breast, prostate, 
and ovarian cancer 
patients.

ENSG00000170153 RNF150 4 140,859,807 141,212,877 Ubiquitin protein ligase activity

The most CNA significative genes (36 genes) from first (15 genes) and second (21 genes) principal component respectively.

Table 12. Genes and chromosome positions, function and diseases of some genes.

Table 13 Genes symbol

6 rows | 1-10 of 37 columns

Patients_ID C10orf126
<int>

SFXN2
<int>

ARL3
<int>

TRIM8
<int>

SUFU
<int>

ATR1A
<int>

MFSD13A
<int>

VTI1A
<int>

1 II 0 -1 -1 -1 -1 -1 -1 -1

0 0 0 0 0 0 0 0 0 1

3 II 0 0 0 0 0 0 0 0

4 III 0 0 0 0 0 0 0 -1

5 III 1 0 0 0 0 0 0 0

6 IV 0 0 0 0 0 0 0 0
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Data Preparation RNAseq counts

RNAseq counts data were directly downloaded from TCGA repository using the function GDCquery from TCGAbiolinks and TCGAutils libraries in R.

Thus, is obtained the file named “raw. counts” with genes and their counts for each patient (Table 14).

For developing a better analysis, rows, and columns in raw. counts file (Table 14) were manually modified. Column” “X1” is changed by Gene_ID and 
numbers after dot in column “X1 were deleted, on patient’s column code was replaced by short participant’s code (see Table 15).

In the same way, that CNA data was carried out, patients in RNAseq counts data, were replaced by FIGO stages identification 

query.exp. hg38 <- GDCquery (project = “TCGA-UCS”, 
                  data. category = “Transcriptome Profiling”, 
                  data. type = “Gene Expression Quantification”, 
                  workflow. type = “HTSeq - Counts”,
                  access = “open”)

GDCdownload (query.exp. hg38)

raw. counts <- GDCprepare (query = query.exp. hg38, summarizedExperiment = FALSE)
head (raw. counts)

X1
<chr>

TCGA-N5-A4RT-01A-11R-A28V-07
<dbl>

TCGA-ND-A4W-01A-21R-A28V-07
<dbl>

TCGA-N5-A4RA-01A-11R-A28V-07
<dbl>

ENSG00000000003.13 4765 6181 1673

ENSG00000000005.5 878 1 5

ENSG00000000419.11 4614 2081 2284

ENSG00000000457.12 913 406 567

ENSG00000000460.15 1549 478 663

ENSG00000000938.11 105 133 96

Table 15. RNAseq counts. Genes and short patients’ identification.

5 rows

Final file with gene symbol (CNA genes) that will be used for integration with RNAseq data
Table 14 Original RNAseq counts data

6 rows | 1-4 of 57 columns 

Gene_ID
<chr>

A4PO
<int>

A4Q1
<int>

A4X2
<int>

A4QY
<int>

1 ENSG0000000003 6217 3778 3211 5074

2 ENSG0000000005 42 46 143 78

3 ENSG0000000419 4035 1865 2022 3019

4 ENSG0000000457 1233 556 968 557

5 ENSG0000000460 1299 489 1269 1146

mycounts_<-read.csv (“C:/Users/CRISTOBAL DE LEON/Documents/GDCdata/raw.counts_.csv”, header = TRUE, sep = “;”)
mycounts [1:5,1:5]
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Names <-c(“II”, “II”,”II”,
“III”,”III”,”IV”,”IA”,”IA”,”IA”,”IA”,”IA”,”IA”,”IA”,”IA”,”IA”,”IA”,”IIIA”,”IIIA”,”IIIA”,”IB”,”IB”,”IB”,”IB”,”IB”,”IB”,”IB”,”IB”,”IIB”,”IIIB”,
”IIIB”,”IVB”,”IVB”,”IVB”,”IVB”,”IVB”,”IVB”,”IVB”,”IVB”,”IVB”,”IC”,”IC”,”IIIC”,”IIIC”,”IIIC”,”IIIC”,”IIIC1”,”IIIC1”,”IIIC1”,”IIIC1”,”IIIC
2”,”IIIC2”,”IIIC2”,”IIIC2”,”IIIC2”,”IIIC2”)
colnames(mycounts) [2:4] = paste0(“II”)
colnames(mycounts) [5:6] = paste0(“III”)
colnames(mycounts) [7:7] = paste0(“IV”)
colnames(mycounts) [8:17] = paste0(“IA”)
colnames(mycounts) [18:20] = paste0(“IIIA”)
colnames(mycounts) [21:28] = paste0(“IB”)
colnames(mycounts) [29:29] = paste0(“IIB”)
colnames(mycounts) [30:31] = paste0(“IIIB”)
colnames(mycounts) [32:40] = paste0(“IVB”)
colnames(mycounts) [41:42] = paste0(“IC”)
colnames(mycounts) [43:46] = paste0(“IIIC”)
colnames(mycounts) [47:50] = paste0(“IIIC1”)
colnames(mycounts) [51:56] = paste0(“IIIC2”)

Condition <-c (“II”, “III”, “IV”, “IA”, “IIA”, “IIIA”, “IB”,”IIB”,”IIIB”,”IVB”,”IC”,”IIIC”,”IIIC1”,”IIIC2”)
colnames(mycounts) [2:4] = paste0(“II”)
colnames(mycounts) [5:6] = paste0(“III”)
colnames(mycounts) [7:7] = paste0(“IV”)
colnames(mycounts) [8:17] = paste0(“IA”)
colnames(mycounts) [18:20] = paste0(“IIIA”)
colnames(mycounts) [21:28] = paste0(“IB”)
colnames(mycounts) [29:29] = paste0(“IIB”)
colnames(mycounts) [30:31] = paste0(“IIIB”)
colnames(mycounts) [32:40] = paste0(“IVB”)
colnames(mycounts) [41:42] = paste0(“IC”)
colnames(mycounts) [43:46] = paste0(“IIIC”)
colnames(mycounts) [47:50] = paste0(“IIIC1”)
colnames(mycounts) [51:56] = paste0(“IIIC2”)

head(mycounts)

DESeq2 package analysis to RNAseq counts data:

DESeq2 package provides methods for detection of differentially expressed 
genes with negative binomial generalized linear models, estimates the 
dispersion (quite wide in RNAseq counts data) and the logarithm with base 
two of the same with the Fold Change option to change the logarithmic 
base. The object class used by the DESeq2 package to store read counts 
(mycounts) and study conditions (metadata) in addition to intermediate 
estimated quantities during statistical analysis is DESeqDataSet, which will 
normally be represented in code here as an object “dds” [19].

DESeqDataSet class extends the RangedSummarizedExperiment class from 
the SummarizedExperimentpackage. The “Ranged” part refers to rows (in 
this case, counts) can be associated with genomic ranks (exons of genes). 
This association facilitates the subsequent exploration of the results, making 
use of the range-based functionality of other Bioconductor packages (for 
example, finding the ChIP-seq peaks closest to the differentially expressed 
genes) [19].

A DESeqDataSet object must have an associated design formula. The 
design formula expresses variables that will be used in the model. Formula 
must be the sign (~) followed by the variables. The design can be changed 
later, however, all steps of the differential analysis must be repeated, as the 
design formula is used to estimate the dispersions and estimate the log2-
fold changes of the model. DESeqDataSetFromMatrix function indicates 
that a matrix of counts has been started and the DESeq function estimates 
the size and dispersion factors of each gene and adaptation of a generalized 
linear model [19].
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metadata<-read.csv (“C:/Users/CRISTOBAL DE LEON/Documents/GDCdata/metadata.csv”, header = TRUE, sep = “;”)

mycounts<-as.data. frame(mycounts)
metadata<-as.data. frame(metadata)

class(mycounts)
class(metadata)
names(mycounts) [-1]
metadata$Name
names(mycounts) [-1] ==metadata$Name

dds<-DESeqDataSetFromMatrix (countData = mycounts,
                            colData = metadata,
                            design = ~Condition,
                            tidy = TRUE)
dds1<-DESeq(dds)

logData<-rlog (dds1, blind = F)

Start RNAseq data analysis by creating dds object in DESeq2:

head(metadata,5)

## estimating size factors
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 28283 genes
## -- DESeq argument ‘minReplicatesForReplace’ = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing

## rlog () may take a long time with 50 or more samples,
## vst () is a much faster transformation

To display data or groupings, it is necessary to transform the counting data. DESeq2 program provides the regularized logarithmic transformation (rlog) 
which gives results similar to the transformation by the base 2 logarithm (log2) for high-count genes, with the rlog becoming a way to return homoscedastic 
data (equal variance).
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head(assay(logData),3)
DeseqMatrix<-estimateSizeFactors(dds1)

For a better understanding of data, prior to the analysis of differential 
expression, it can see some plots that explain some study conditions. In the

Heatmap below (Figure 4) we can see the overexpressed genes represented 
with pink figures that stand out from the blue background of the Heatmap:

Figure 4. Strong red colors indicates values close to zero of greater similarity, while the paler colors, with values from 300 to 350, indicates greater 
distance between the samples, therefore less relationship between them. Very few genes are located near the strong red main diagonal. Most genes (pale 
pink and white colors) are very distant from the diagonal, only a few (strong pink colour) are close. This fact leads us to think that in the comparisons 
between the different conditions of the samples (between the different types of tumours) there will be few genes that will be differentially expressed.

Descriptive and Graphical Analysis from RNAseq Data 
Processing
Differential expression analysis:

Using results function from DESeq2 and adding a contrast = c (“Condition”, 
“II”, “III”, for example), comparison is made between groups, each group 
represents infiltration degree and invasiveness of the tumor, so, the first 
comparison is between II and III groups, the second comparison is between 
III and IV groups, the thirds comparison is between IV and IA groups and so 
on. This function also calculates the log2FoldChange (LFC) or estimate the 
effect indicating change in gene expression of one sample in relation to the 
other. Additionally, DESeq2 performs a hypothesis test for each

gene, thereby looking for technical variability of the experiment, for this 
it calculates the p-value of each gene. p-value is adjusted (padj) less than 
0.05. The adjustment is obtained by the Benjamini-Hochberg method, 
indicating the false discovery rate [20]. After having made all comparisons, 
the differentially over-expressed genes are obtained, which will be used 
to build a file with the highly significant genes that will be used in the 
integration with the CNA genes.

Comparison between II and III groups (samples=patients):

res1<-results (dds1, contrast = c(“Condition”,”II”,”III”), alpha = 0.05)
summary(res1)
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## out of 53505 with nonzero total read count
## adjusted p-value < 0.05
## LFC > 0 (up): 89, 0.17%
## LFC < 0 (down): 59, 0.11%
## outliers [1]: 365, 0.68%
## low counts [2]: 20601, 39%
## (mean count < 1)
## [1] see ‘cooksCutoff’ argument of? results
## [2] see ‘independentFiltering’ argument of? results

Total genes comparison, 535051. Of these only 148 genes are differentially expressed, 89 are overexpressed (LFC> 0, up), with 17% expression of samples 
II in relation to samples III. 59 genes of lower expression.

Differentially expressed genes (148) are observed. The same 89 overexpressed but with a higher percentage of expression than the result without the adjusted 
p-values. 60% expression of samples II in relation to samples III.

Now let’s look at the 30 differentially overexpressed genes according to the fitted p-values.

Comparison between III and IV groups (samples):

Adjustment of p-values

resadj1<-subset (res1, padj<0.05)
summary(resadj1)

top_genes1<-resadj1[order(resadj1$log2FoldChange),]
top_genes_DESeq2_1<-rownames(top_genes1) [1:30]
top_genes_DESeq2_1

res1A<-results (dds1, contrast = c (“Condition”, ”III,”IV”), alpha = 0.05)
summary(res1A)

## out of 148 with nonzero total read count
## adjusted p-value < 0.05
## LFC > 0 (up): 89, 60%
## LFC < 0 (down): 59, 40%
## outliers [1]: 0, 0%
## low counts [2]: 0, 0%
## (mean count < 1)
## [1] see ‘cooksCutoff’ argument of? results
## [2] see ‘independentFiltering’ argument of? results

## out of 53505 with nonzero total read count
## adjusted p-value < 0.05
## LFC > 0 (up): 53, 0.099%
## LFC < 0 (down): 13, 0.024%
## outliers [1]: 365, 0.68%
## low counts [2]: 22654, 42%
## (mean count < 2)
## [1] see ‘cooksCutoff’ argument of? results
## [2] see ‘independentFiltering’ argument of? results
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After all the comparisons, a final file of most significative genes (RNAseq) is manually built (see Table 17) by further integration with CNA data

Statistical data analysis

CNA_36 and RNAseq_96 data integration

CNA_36 and RNAseq_96 data integration is carrying out by using sparse 
partial least squares regression (sPLS) of mixOmics R package. This is 
multivariate method that allows modeling multiple responses in data of high 
multicollinearity such as omic data (Wold et al., 2001), also, is not limited 
to correlated variables. The integration is achieved between 2 data matrices 
X and Y. sPLS is executed in the Bioconductor mixOmics package [21]. The 

Matrix X creation

First, is created the dds2 object with the RNAseq data of 96 differential expressed genes

aim of dispersed partial least squares (sPLS) methodology is to maximize 
the covariance between both data sets and to identify latent variables. In this 
work will be carried out correlation between two matrices: matrix X from 
RNAseq_96 counts (transcripts) data and matrix Y from CNA_36 data. 
Analysis involves the perf function that is used for cross-validation with 
10-fold, with a few repetitions of 100 (nrepeat = 100).

top_genes2<-resadj2[order(resadj2$log2FoldChange),]
top_genes_DESeq2_2<-rownames(top_genes2) [1:6]
top_genes_DESeq2_2

Table 17. RNAseq counts of most significative genes 

6 rows|1-10 of 56 columns 

dds2<-DESeqDataSetFromMatrix (countData = RNAseq_96,
                            colData = metadata,
                            design = ~Condition,
                            tidy = TRUE)
dds2

class: DESeqDataSet
dim: 96 55
metadata (1): version
assays (1): counts
rownames (96): ENSG00000046774 ENSG00000048545…… ENSG000000278532
ESNG00000280323
rowData names (0):
colnames (55): II II…. IIIC2 IIIC2
colData names (2): Name Condition

Gene_ID
<chr>

II
<int>

II
<int>

II
<int>

III
<int>

III
<int>

IV
<int>

IA
<int>

IA

1 ENSG00000046774 0 353 217 0 29 0 13 0

2 ENSG00000048545 2 5 1 0 2 0 0 1

3 ENSG00000077522 19 9846 162 19 10 108 594 101

4 ENSG00000086967 3 2522 29 34 59 54 110 494

5 ENSG00000101292 0 0 0 92 4 0 9 0

6 ENSG00000101441 0 0 0 21 42 4 0 0
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Y <- CNA_36
Y<-as.data. frame(Y)
Y [] <-lapply (Y [2:36], as. numeric)
dim(Y)

na.row<-sample (1: nrow(Y), replace = TRUE)
na.col<-sample (1: ncol(Y), replace = TRUE)
Y<-as. matrix(Y)
Y<-Y [, -1]
dim(Y)

spls0<-spls (XT, Y, ncomp=5, mode = “regression”)

tune. spls0<-perf (spls0, validation = “Mfold”, folds = 9, progressBar = FALSE, nrepeat = 100)

Matrix Y has 55 rows (patients) and 36 columns (genes)

1[] 55 37

1[] 55 36

Matrix Y creation

Matrix Y is created with the CNA data of 36 most significant genes

Integration using sPLS
Prior the integration, it´s necessary to include into model a larger number of principal component (ncomp = 5) because of perf function perform a deeper 
study to determine the real principal components must be selected to integrate into the model.

Plotting this result, Figure 5 show the number of principal components selected by the model. 

X <- assay(dds2)
XT<-t(X)
dim (XT)

## [1] 55 96

Then, is created the transposed X matrix (genes remain in columns like Y matrix of CNA data).

Matrix X transposed has 55 rows (patients) and 96 columns (transcripts)

Figure 5. In this plotting it´s seen the number of principal components selected by the model (ncomp = 1) since there is 
only one component above the 0.0975 line, therefore it proceed to model both data sets with one component
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plot (tune. spls0$Q2.total)
abline(h=0.0975)

spls<-spls (XT, Y, ncomp=1, mode = “regression”)
tune. spls<-perf (spls, validation = “Mfold”, folds = 9, progressBar = FALSE, nrepeat = 100)

Now, it will model the entire 96 genes from matrix X (RNAseq) and the 36 genes from matrix Y (CNA) usin the spls function

From these results it can obtain two plots. The first plot (Graphical representation of the samples) shows, by clustering, the relationship between each block 
of samples separately, Block X (RNAseq data) and Block Y (CNA data) (see Figure 6).

plot (tune. spls$Q2.total)
abline(h=0.0975)

MyResult.spls <- spls (XT, Y, keepX = c (96, 96), keepY = c (36,36)) 

Figure 6. Plot of samples. Blocks X and Y shows clustering between samples. On Block X clustering is more remarkable between all of the samples, 
while on Block Y, separation between samples is more remarkable, thus, patients of most infiltration and invasiveness tumor (IIIB, IVB, IIIC) 
clustering togheter but more separated than patients of less infiltration and invasiveness tumor (IA, IB, IC). This means, transcripts (genes) on Block 
X are expressed in a similar way in the different types of tumors, while specifc CNA genes on Block Y are expressed in a different way according the 
types of tumor.
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plotIndiv (MyResult.spls,
ind. names=TRUE,
title=’Plot of Samples’)

plotVar (MyResult.spls,
var. names = TRUE, TRUE),
pch=c (5,5))

The second plot (Graphical representation of the variables) shows the correlation between genes (Figure 7).

Figure 7. Correlation between genes. Orange genes are CNAs and blue genes are transcripts (RNAseq counts). All genes within the center circle 
(around zero) are not correlated while genes furthest from the central circle (far from zero) show high correlation. RNAseq and CNA genes located 
on the same plane (left side) are highly correlated either positively or negatively. For example, TPM3, RPS27 and ACTR1A genes (CNA) are 
positively correlated with each other but negatively correlated with blue genes (RNAseq) in the same plane above the central zero line.
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Results

Graphic study on samples clustering in RNAseq and CNA data showed 
a clear clustering of samples. RNAseq samples showed clustering around 
central zero of all types of tumors, without clear separation between 
them. This indicates variance of different samples is not explained by the 
transcripts (genes). Clusters were also presented in all the samples without 
clear separation between them. Clusters top and bottom of central zero, 
especially of tumor samples with most infiltration and invasiveness (IVB, 
IC, IIIC, IIIC1, IIIC2, IIIC3) explained the most proportion of variance 
(Block X Figure 6).

CNA genes showed clearly separate clustering’s according to the types of 
tumors. Samples of tumor of less infiltration and invasiveness (II, III, IV, IA, 
IIA, IIIA, IB, IIIB) were clustered more closely (right side Block Y Figure 
7) near of central zero and tumor with most infiltration and invasiveness 
(IVB, IC, IIIC, IIIC1, IIIC2, IIIC3) were clustered more closely away from 
central zero (left side Block Y Figure 7). Many samples were clustered very 
closely at central zero especially samples belonging to tumors with less 
infiltration and invasiveness (II, III, IV, IA, IIA, IIIA, IB, IIIB), indicating 
some CNA genes have a weak influence on tumors with less infiltration and 
invasiveness.

Another important finding in both files (RNAseq and CNA data) according 
to graphic study on samples is that they showed a strong negative correlation 
between them. Tumors with more infiltration and invasiveness shows 
high dispersion under the central zero, while tumors with less infiltration 
and invasiveness shows moderate dispersion above the central zero. This 
indicates both types of genes (mRNA transcripts and CNA genes) are 
highly expressed in aggressive tumors. 
 
According to graphical study on genes (Correlation Circle on Figure 7), 
most RNAseq genes are clustered in the central circle indicating that many 
of them don´t have influence in the expression of the different types of 
tumors. On the other hands very few CNA genes are within the central 
circle but most of them outside the central circle indicating that CNA genes 
have a most influence in the expression on the tumors than the RNAseq 
genes.

The variance explained by genes (RNAseq and CNA genes) located 
in the largest circle is similar but with opposite correlation in some of 
them. RNAseq genes located above the central horizontal line, strongly 
expressed, maintain a negative correlation with CNA genes below the
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central horizontal line, while RNAseq genes located below the central 
horizontal line together with CNA genes, maintain a positive correlation, 
indicating both specific RNAseq and CNA genes are molecularly linked in 
the expression of this disease.

Among CNA genes located in the largest circle below the central horizontal 
line are, TPM3 (tropomyosin 3) and RPS27 (ribosomal protein S27) genes, 
both located on chromosome 1 and ACTR1A (Alpha-centractin: actin 
related protein 1A: regulation of G2/M transition of mitotic cell cycle. 
Spermatogenesis) gene is located on chromosome 10 also outside the central 
circle keeping direct positive correlation with the TBX22 gene (T-box 
transcription factor, transcriptional regulator involved in developmental 
processes) located on chromosome X. [22,23].

Among RNAseq genes located in the largest circle above the central 
horizontal line are, ENSG00000143028 (SYPL2: Synaptophysin-like 
protein 2: heart development) human gene located on  Chromosome 1; 
ENSG00000077522 (ACTN2: alpha actinin-2, structural constituent of 
muscle) human gene also located on Chromosome 1; ENSG00000086967 
(MYBPC2: Myosin-binding protein C, fast-type: It may modulate muscle 
contraction or may play a more structural role, structural constituent of 
muscle) human gene located on Chromosome 19 and ENSG00000253767 
(PCDHGA8 Protocadherin gamma-A8: Potential Calcium-dependent cell-
adhesion protein. May be involved in the establishment and maintenance 
of specific neuronal connections in the brain.) human gene located on 
Chromosome 5, most of them involved in muscle disorders [22,23].

Discussion

RNAseq and CNA genes showed a high expression and correlation between 
them in the different uterine cancer, especially the FIGO stages of most 
infiltration and invasiveness (IIIB, IVB, IIIC1, IIIC2), unlike gene fusion 
study findings by Chiang et al. [24], in uterine carcinosarcoma, which 
reported all tumors they found as FIGO stage IB. Approximately 16 of 96 
RNAseq and 12 of CNA genes have relationship with this pathology: TPM3, 
RPS27 and ACTR1A CNA genes are correlated to ENSG00000122145 
(TBX22), ENSG00000143028 (SYPL2), ENSG00000077522 (ACTN2), 
ENSG00000086967 (MYBPC2) and ENSG00000253767 (PCDHGA8) 
RNAseq genes. TPM3, RPS27 CNA genes and ENSG00000143028 
(SYPL2), ENSG00000077522 (ACTN2) RNAseq genes are located on 
chromosome 1. To date, TMP3 gene have been reported among tumors 
with NTRK1 (Neurotrophic Tyrosine Receptor Kinase) -related fusion-
positive tumors [25]. NTRK1 encodes for TrK (Tropomyosin receptor 
kinase) genes, Trk pathway aberrations, including gene fusions, is involved 
in many human cancers, with NTRK gene fusions [26,27]. RPS27 gene has 
been reported by Xiong et al. [28] demonstrating that neddylation stabilizes 
RPS27 gene “to confer the survival of cancer cells”. Neddylation (ubiquitin-
like protein NEDD8: neural-precursor-cell-expressed developmentally 
down-regulated 8 is conjugated to its target proteins) causes a structural 
change in the substrate [29]. ACTR1A gene has been reported by Wang 
et al. [30] which is correlated with metabolic enzyme phosphoglycerate 
mutase enzyme 1 (PGAM1), this is a key enzyme in the glycolysis pathway 
(glycolysis is related to cancer progression). The SYPL2 gene (RNAseq 

gene) highly expressed here was identified in small cell lung cancer by 
combining affinity propagation clustering of selected genes from different 
cancer databases [31]. ACTN2 gene was identified by Lo et al. [32] like 
responsible for hepatocellular carcinoma by using the transcriptome fusion 
genes methodology. MYBPC2 gene has been found highly expressed in 
rhabdomyosarcoma (cancerous malignant tumor in the muscles attached 
to the bones) [33].

All these findings derived from omic data integration performed here, allow 
clear up interactions between large molecules at the metabolic level that can 
be used as diagnostic and treatment mechanisms in personalized medicine 
in patients who enroll in clinical trials.

Conclusions

I found copy number alteration results in differential gene expression in 
uterine carcinosarcoma. High correlation between CNA (TPM3, RPS27, 
ACTR1A) and RNAseq (SYPL2, ACTN2, MYBPC2) genes may be involved 
in the pathogenesis of uterine carcinosarcoma.
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