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What Is Alternative Splicing?

Eukaryotic genes, primarily in multi-cellular organisms, have mRNA-
encoding regions called exons that are interrupted by non-coding regions 
named introns.  This split gene structure provides a fertile ground of post-
transcriptional regulation which expands transcript repertoire through usage 
of various exon-exon combinations (i.e. alternative splicing) resulting in 
multiple mRNA isoforms (i.e. splice variants) produced from a single gene 
[1]. High-throughput RNA sequencing (RNA-seq) indicates that > 90% of 
multi-exon human genes undergo alternative splicing (AS) [2,3].  More 
importantly, AS can change a final protein’s binding properties, modify 
enzymatic activity, and even reverse roles of its gene in cellular processes (e.g. 
two isoforms of Bcl-x through AS, the long form is anti-apoptotic, while the 
short one is pro-apoptotic) [4]. Besides the role of AS in normal development, 
evidence of pathogenesis and clinical relevance of aberrant splicing variants 
is growing exponentially [5], with an estimated 10% of splice site mutations 
(exon intron boundary) causing human inherited diseases [6-8]. Deciphering 
the pre-mRNA splicing code and functional characterization of splice 
variants will provide us new insights of pathogenesis of human diseases.

How Is pre-mRNA Splicing Regulated?

The precision of pre-mRNA splicing relies on interactions between cis 
elements and trans regulators that recognize cis elements (Figure 1). The 
core cis splicing signals include two groups of elements: (1) the 5’ or 3’ 
splice site which determines the exon-intron boundary; (2) branch site and 
polypyrimidine tract that are initially recognized during intron cleavage 
steps. Other auxiliary exonic and intronic elements (i.e. ESE: exonic splicing 
enhancer, ISE: intronic splicing enhancer, ESS: exonic splicing silencer, ISS: 
intronic splicing silencer) also participate in the process, either promoting 
orinhibiting splicing. During the splicing process, the core splicing signals 
(e.g. 5’ or 3’ splice site) are recognized by spliceosome complex which is 
composed of five small nuclear RNAs (snRNAs: U1, U2, U4, U5, and U6) and 
associated protein factors, while auxiliary element region (e.g. ESE or ISS) 
can recruit SR (serine/arinine-rich)-proteins and hnRNPs (heterogeneous 
nuclear ribonucleoproteins). Interplay of RNA-protein and protein-protein 
interaction leads to  final precise splicing in normal development [9].

Pre-mRNA Splicing Defects in Diseases 
Either mutation of cis elements or perturbation of trans factors could impair 
splicing which contributes to disease phenotypes [7]. For instance, the 
occurrence of congenital bilateral absence of vas deferens (CBAVD) and full 
brown cystic fibrosis disease is associated by loss of CFTR (Cystic fibrosis 
transmembrane conductance regulator) exon 9, an aberrant alternative 
splicing with production of an inactive CFTR protein. Further studies 
proved that the TG(m)T(n) polymorphic element in the vicinity of CFTR 
exon 9 affects the efficiency of its exon 9 splicing [10].  Another example 
of cis element mutation affecting splicing is in ataxia telangiectasia, a 
neurodegenerative disease. Baralle and his colleagues found that deletion of 
four nucleotides (GTAA) in intron 20 of ATM gene abolished accurate intron 
processing, caused activation of the cryptic exon of 65 bp [11]. The ATM 
allele with this 4nt deletion fails to produce a functional protein, which is vital 
for cell cycle checkpoint signalling in DNA damage response and genome 
instability.  Among the diseases caused by splicing trans regulators, myotonic 
dystrophy (DM1) is a particularly well-studied example. An expanded 
CUG repeat in 3’ UTR of DMPK gene leads to sequestration of MBNL 
protein and upregulation of the fetal splicing patterns controlled by CELF 
protein, which finally contributes to severe manifestations of disease [12]. 

Figure 1: Alternative splicing controlled by cis elements and trans factors.  
The black box represents altered exon; flanking white boxes represent 
constitutive exons.  Core cis splicing elements include 5’ or 3’ splice site 
(5’SS and 3’SS), branch point (A site) and poly-pyrimidine tract (Y(n)). Key 
trans factors such as U1, U2 small nuclear ribonucleoproteins (snRNPs), U2 
Auxiliary factor (U2AF), SRs (serine/arinine-rich proteins) and hnRNPs 
(heterogeneous nuclear ribonucleoproteins) are also depicted in the figure.
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Interestingly, disease severity can by modulated by the interplay of cis 
mutation and trans factor perturbation. One splicing genetic modifier of 
SCN8A gene has been characterized in mice. In C3H mice, a 4nt deletion 
(GTAA) close to 5’ splice site of SCN8A exon 3 results in skipping of both 
exon 2 and exon 3 in most transcripts resulting in only 10% of the transcripts 
beingcorrectly spliced. C57BL/6J mice, in addition to the 4nt deletion in 
SCN8A gene, have a stop mutation in SCNM1 gene whose protein product 
acts as a splicing factor controlling SCN8A splicing patterns. With both the 
deletion in SCN8A and the mutation in SCNM1, only 5% of SCN8A will 
be correctly spliced in C57BL/6J mice. This small (10% vs. 5%) splicing 
difference however leads to dramatically distinct disease phenotypes. C3H 
mice only have a disorder of chronic movement while C57BL/6J mice 
develop a severe lethal neurological disease [13].  Such above evidence 
underscores the roles of AS in inherited diseases. In addition, aberrant 
splicing events observed in cancers through alteration of splicing factor 
concentration or localization are reviewed extensively elsewhere [14,15]. 

Perspectives and Challenges of Studying Defective Splicing 

Despite widespread use of AS in both major physiological  and 
pathological aspects of cell biology, we still do not understand the 
function of most splice variants. Without functional data, we cannot 
decipher if these aberrant splicing events play a role in initiation and/
or development of diseases or whether they are just “passenger” 
isoforms. In fact, functional characterization of certain transcript on  a 
splicing level involves more technical difficulties than the gene level.

For instance, confounding factors cannot be ruled out, such as global gene 
expression change, or additional isoform product from cryptic exon usage 
when the target exon splicing of interest is blocked. Moreover, due to the 
function redundancy of splicing regulatory proteins it is extremely difficult 
to get clear regulatory architecture of certain defective splicing.  Thanks to 
cutting-edge technologies such as deep RNA sequencing and clinical whole 
exome sequencing, we are now able to access the potential links between AS, 
DNA variants and disease traits [16]. Furthermore, many splicing regulatory 
elements that promote or inhibit splicing have been identified in in vitro 
random oligonucleotide library screening [17,18]. Currently, HITS-CLIP 
(high throughput sequencing by crosslinking immunoprecipitation) provides 
us a refined interaction map between mRNA and RNA binding proteins 
across diverse tissues and cell types [19,20]. All above comprehensive 
studies are facilitating many important investigations of AS regulation. For 
example, globally correlating AS to RNA binding map of certain splicing 
factor scan gain important insights into how RNA-protein interactions 
affect splicing, integration of  hundreds of putative splicing regulatory 
elements/feature can predict tissue-specific AS patterns [21,22]. Meanwhile, 
antisense oligonucleotide targeting splice sites have been developed as a 
modulator of pre-mRNA splicing, a powerful approach to dissect function 
role of splicing variants [23]. Some promising antisense oligonucleotides are 
already in clinical trials, for instance AVI-4658 is in clinical trials testing 
for mis-splicing disorder in Duchenne Muscular Dystrophy [24]. We believe 
that this RNA splicing topic will deepen the impression of AS roles in 
diseases and foresee the AS biomarkers as the effective therapeutic targets.
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