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Abstract

This paper presents an approach to the EulerBernoulli beam theory (EBBT) using the finite difference method (FDM). The EBBT covers the case 
of small deflections, and shear deformations are not considered. The FDM is an approximate method for solving problems described with differential 
equations. The FDM does not involve solving differential equations; equations are formulated with values at selected points of the structure. Generally, 
the finite difference approximations are derived based on fourth-order polynomial hypothesis (FOPH) and second-order polynomial hypothesis (SOPH) 
for the deflection curve; the FOPH is made for the fourth and third derivative of the deflection curve while the SOPH is made for its second and first 
derivative. In addition, the boundary conditions and not the governing equations are applied at the beam’s ends. In this paper, the FOPH was made for 
all of the derivatives of the deflection curve, and additional points were introduced at the beam’s ends and positions of discontinuity (concentrated loads 
or moments, supports, hinges, springs, etc.). The introduction of additional points allowed us to apply the governing equations at the beam’s ends and to 
satisfy the boundary and continuity conditions. Moreover, grid points with variable spacing were also considered, the grid being uniform within beam 
segments. First-order analysis, second-order analysis, and vibration analysis of structures were conducted with this model. Furthermore, tapered beams 
were analyzed (element stiffness matrix, second-order analysis). Finally, a direct time integration method (DTIM) was presented. The FDM-based DTIM 
enabled the analysis of forced vibration of structures, with damping taken into account. The results obtained in this paper showed good agreement with 
those of other studies, and the accuracy was increased through a grid refinement. Especially in the first-order analysis of uniform beams, the results were 
exact for uniformly distributed and concentrated loads regardless of the grid. Further research will be needed to investigate polynomial refinements 
(higher-order polynomials such as fifth-order, sixth-order…) of the deflection curve; the polynomial refinements aimed to increase the accuracy, whereby 
non-centered finite difference approximations at beam’s ends and positions of discontinuity would be used.

Keywords: Euler-Bernoulli beam; Finite difference method; Additional points; Element stiffness matrix; Tapered beam;  Second-order analysis; 
Vibration analysis; Boundary value problem; Direct time integration method

Enliven Archive
Intensifying Thoughts

Introduction

The Euler-Bernoulli beam has been widely analyzed in the literature. 
Several methods have been developed, such as the force method, the slope 
deflection method, and the direct stiffness method. The analytical approach 
consists of solving the governing equations (i.e., statics and material) that are 
expressed via means of differential equations, and satisfying the boundary 
and continuity conditions. However, solving the differential equations 
may be difficult in the presence of an axial force (or external distributed

axial forces), an elastic Winkler foundation, tapered beams, or damping 
(by vibration analysis). Numerical methods permit therefore to overcome 
solving the differential equations. A considerable volume of literature has 
been published on numerical methods for Euler-Bernoulli beam analysis. 
Anley et al. [1] considered a numerical difference approximation for solving 
two-dimensional Riesz space fractional convection-diffusion problem with 
source term over a finite domain. Kindelan et al. [2] presented a method to
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obtain optimal finite difference formulas which maximize their frequency 
range of validity. Both conventional and staggered equispaced stencils for 
first and second derivatives were considered. Torabi et al. [3] presented an 
exact closed-form solution for free vibration analysis of EulerBernoulli 
conical and tapered beams carrying any desired number of attached 
masses; the concentrated masses were modeled by Dirac’s delta functions. 
Katsikadelis [4] presented a direct time integration method for the solution of 
the equations of motion describing the dynamic response of structural linear 
and nonlinear multi-degree-of-freedom systems. The method applied also 
to equations with variable coefficients. Soltani et al. [5] applied the Finite 
Difference Method (FDM) to evaluate natural frequencies of non-prismatic 
beams, with different boundary conditions and resting on variable one or two 
parameter elastic foundations. Boreyri et al. [6] analyzed the free vibration of 
a new type of tapered beam, with exponentially varying thickness, resting on 
a linear foundation. The solution was based on a semi-analytical technique, 
the differential transform method. Mwabora et al. [7] considered numerical 
solutions for static and dynamic stability parameters of an axially loaded 
uniform beam resting on a simply supported foundations using FDM where 
Central Difference Scheme was developed. In the classical beam analysis 
using the FDM, the finite difference approximations are derived based on 
fourth order polynomial hypothesis (FOPH) and second-order polynomial 
hypothesis (SOPH) for the deflection curve; the FOPH is made for the 
fourth and third derivative of the deflection curve while the SOPH is made 
for the second and first derivative. In addition, points outside the beam are

generally not considered; the boundary conditions are applied at the beam’s 
ends and not the governing equations. Consequently, the non-application 
of the governing equations at the beam’s ends together with the different 
polynomial hypotheses for the deflection curve have led to inaccurate results, 
making the FDM less interesting in comparison to other numerical methods 
such as the finite element method. In this paper, a model based on FDM was 
presented. This model consisted of formulating the differential equations 
with finite differences and introducing additional points at beam’s ends 
and at positions of discontinuity (concentrated loads or moments, supports, 
hinges, springs, change of grid spacing, and brutal change of stiffness). The 
introduction of additional points allowed us to apply the governing equations 
at the beam’s ends and to satisfy the boundary and continuity conditions. 
Furthermore, the finite difference approximations were derived using the 
FOPH for all of the derivatives of the deflection curve. Finally, a direct time 
integration method (DTIM) was presented; the FDM-based DTIM enabled 
the analysis of forced vibration of structures, the damping being considered.

Materials and Methods
3.1) First-Order Analysis 

The sign conventions adopted for loads, bending moments, shear forces, and 
displacements are illustrated in Figure 1. Specifically, M(x) is the bending 
moment in the section, V(x) is the shear force, w(x) is the deflection, and 
q(x) is the distributed load in the positive downward direction.

First-order analysis of uniform beam within segments

Statics: According to Euler-Bernoulli beam theory (EBBT), the governing 
equation of a beam loaded with q(x) is as follows:

Fundamentals of FDM for a uniform beam: Figure 2 shows a 
segment of a beam having equidistant points with grid spacing h.

where EI is the flexural stiffness and k(x) is the stiffness of the elastic 
Winkler foundation. The bending moment, shear force, and slope (x) are 
related to the deflection as follows:

The deflection curve can be described with the values of deflections at 
equidistant grid points:

The shape functions fj(x) (j = i-2; i-1; i; i+1; i+2) can be expressed using the 
Lagrange polynomials:

(3a) (3b)

(1)

Figure 1 Sign convention for loads, bending moments, shear forces, and displacements

Figure 2  Beam with equidistant points
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Thus, a five-point stencil is used to derive finite difference approximations 
to derivatives at grid points. The derivatives at i are expressed with values of 
deflection at points i-2; i-1; i; i+1; i+2. 

FDM Formulation of equations, efforts, and deformations: Let us consider 
a segment k of the beam having a flexural stiffness EIk and equidistant grid 
points with spacing hk. We introduce a reference flexural stiffness EIr  as 
follows 

	 EIk = k x EIr  	 (5)

We set		

 	 W(x) = EIr x w(x)       (5a)

Substituting Equations (4a), (5), and (5a) into Equation (1) yields

At point i, the bending moment, shear force, and slope are formulated with 
finite differences using Equations (2a-c), (4b-d), (5), and (5a).

(8a).

(6)

The balance of vertical forces applied to a free body diagrams yields the 
following:

The combination of Equations (8a-f) yields the FDM value qi for the position 
i being the left beam’s end, an interior point on the beam, or the right beam’s 
end.

The application of Equations (8g-8i) shows that in the case of a linearly 
distributed load, qi is equal q(xi). At point i, the stiffness of the elastic 
Winkler foundation ki is calculated similarly to Equations (8g8i). 

Analysis at positions of discontinuity: Positions of discontinuity 
are positions of application of concentrated external loads (force or moment), 
supports, hinges, springs, abrupt change of cross section, and change of grid 
spacing. 

Equations of continuity: Let us consider segments k and p of the beam 
having flexural stiffness EIk and EIp, and equidistant grid points with spacing hk 
and hp.  Concentrated loads (force P and moment M*) are applied at point i, as 
represented in Figure 3.

The model developed in this paper consists of realizing an opening of the 
beam at point i and introducing additional points (fictive points ia, ib, ic, and 
id) in the opening, as represented in Figure 4a,b.

FDM Formulation of loadings

Let us determine here the FDM value qi (Equation (6)) in the case of a varying 
distributed load q(x). Without considering the elastic Winkler foundation the 
distributed load q(x) is related to the shear force V(x) as follows:

Considering here a three-point stencil, the following FDM formulations of 
the first derivative can be made. The position i is considered as the left beam’s 
end, an interior point on the beam, or the right beam’s end, respectively:
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Figure 4a,b   Opening of the beam and introduction of additional 
points on the left side (4a) and right side (4b)
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Figure 3  Beam with change in grid spacing and stiffness
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First-order analysis of a tapered beam 

Statics: The case of a tapered beam, as shown in Figure 7, was analyzed. 
The stiffness of the elastic Winkler foundation is denoted by k(x) is 
considered. The varying flexural stiffness is EI(x). The equations of static 
equilibrium and material relation are formulated as follows:

The slope is determined using Equation (2c), and the shear force using (2b).

FDM formulations of equations, efforts, and deformations  

Two FDM approximations were considered for the analysis of tapered 
beams: the M-W and the W FDM approximation.

M-W FDM approximation: The unknowns at a given point are the deflection 
and the bending moment. A uniform grid with spacing hk is considered. 
Equations (13a-b) have a second order derivative; consequently, a three-
point stencil is considered for the following derivatives (S(x) representing 
M(x) or w(x)):

A reference flexural rigidity EIr is introduced (Equations (5-5a)). Here the 
parameter  is defined at any position i. 
Considering Equations (5-5a) and (14a), the FDM formulations of Equations 
(13a,b) yield   

At any point on the grid, Equations (15a-b) are applied. The application of 
Equations (2b), (2c), and (14b) yields the shear force and slope:

W FDM approximation: The unknown at a given point is the deflection. 
Substituting Equation (13b) into (13a) yields

Developing Equation (15e) yields

(15e)

(15f)

The governing equation (Equation (6)) is applied at any point of the beam, 
i.e., i-2; i-1; il; ir; i+1; i+2, etc. Thus, the governing equations at positions 
il and ir yield:

The FDM formulations qil and qir of distributed loading and kil and kir of 
elastic Winkler foundation are calculated using Equations (8g-i). 

The following continuity equations express the continuity of the deflection 
and slope (Equation (7c)), and the equilibrium of the bending moment 
(Equation (7a)) and shear force (Equation (7b)):

An adjustment of the continuity equations is made in case of a hinge (no 
continuity of the slope, Mil = Mir = 0), a support (Wil = Wir = 0, no equation 
(10d)), or a spring. 

At the beam’s ends, additional points are introduced (as shown in Figure 
4a,b) and so governing equations are applied at the beam’s ends, as well as 
the boundary conditions.

Change of grid spacing: The discretization of the beam may lead 
to uniform-grid segments, but the grid spacings being different from one 
segment to another, as represented in Figure 5.

The governing equation (Equation (6)), and the equations for the 
determination of the bending moment, shear force, and slope (Equations (7a-
c)) at position i are formulated under consideration of different grid spacings 
h1 and h2. The continuity equations (Equations (10a-b) and (11-12) also 
apply.

Non-uniform grid: The grid may be such that every node has a non-
constant distance from another, as represented in Figure 6.

Here, the Lagrange interpolation polynomial (Equation (3b)) is used for FDM 
formulation. The resulting equations are complicated, and consequently 
the non-uniform grid is not further analyzed in this paper. In fact, this case 
should not be analyzed as a discontinuity position.   

Figure 5   Beam with different grid spacings

Figure 6   Beam with a non-uniform grid
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Figure 7    Tapered beam

1 1

1 1

( ) (15 )
2

( ) (15 )
2

i i
i

i k

i i
i

i k

M MdM xV c
dx h

w wdw x d
dx h

ϕ

− +

− +

− +
= =

− +
= =

2 2

2 2

( )( ) ( ) ( ) ( )d d w xEI x k x w x q x
dx dx

 
− − = − 

 

[ ] [ ]24 3 2

4 3 2 2

( ) ( )( ) ( ) ( )( ) 2 ( ) ( ) ( )
d EI x d EI xd w x d w x d w xEI x k x w x q x

dx dx dx dx dx
+ + + =

il ir il irw w W W= → =                                                                                                                                   (10a) 

2 1 1 28 8 8 8
12 12

i i ia ib ic id i i
r il r ir

k p

W W W W W W W WEI EI
h h

ϕ ϕ − − + +− + − − + −
= → =                                    (10b) 

*

*2 1 1 2
2 2

16 30 16 16 30 16
12 12

il ir

i i il ia ib ic id ir i i
k p

k p

M M M
W W W W W W W W W W M

h h
β β− − + +

− = →
− + − + − + − +

− =
            (11) 

2 1 1 2
3 3

2 2 2 2
2 2

i i ia ib ic id i i
il ir k p

k p

W W W W W W W WV V P P
h h

β β− − + +− + − − + −
− = → − =                         (12) 

  



Enliven Archive | www.enlivenarchive.org

	
	
2021 | Volume 4 | Issue 35

At a point i with a hinge the slopes are not equal anymore, and the moments 
Mil and Mir are zero.

W FDM approximation: Similarly to the MW FDM approximation, 
an opening of the beam at point i introduced additional points (points ia, ib, 
ic, and id) in the opening, as represented in Figure 4a,b.

The continuity equations (Equations (16a-d)) are applied. However, the 
bending moment, the shear force, and the rotation of the cross section are 
calculated using Equations (15l), (15m), and (7c), respectively.

Mixed FDM approximation: MW FDM approximation and W FDM 
approximation can be considered on either side of the point of discontinuity. 
This may be helpful when a uniform beam segment (W FDM approximation) 
and a tapered beam segment (MW FDM approximation) are connected. The 
continuity equations are then formulated with the corresponding formulas.

First-order element stiffness matrix of a tapered beam: The 
MW FDM approximation (Equations (15a-d)) is used in this section. 
Nevertheless, the W FDM approximation could also be considered with 
appropriate equations (Equations (15k) with qi = 0, (15l-n)).

44 element stiffness matrix: The sign conventions for bending 
moments, shear forces, displacements, and slope adopted for use in 
determining the element stiffness matrix in local coordinates is illustrated 
in Figure 9.

Let us define following vectors:

The 44 element stiffness matrix in local coordinates of the tapered beam 
is denoted by K44.
The vectors above are related together with the element stiffness matrix K44 
as follows:

Let us divide the beam in n parts of equal length h (l =nh) as shown in Figure 
10. 

Figure 10  Finite difference method (FDM) discretization for 4x4 
element stiffness matrix

(18)

Since the flexural stiffness EI(x) of the beam varies throughout the 
longitudinal axis, reference values are defined like for uniform beams (see 
Equation (5)). The reference length and the grid spacing are denoted by 
lr.and hk, respectively.

The parameters I(x) and I(x) are related to the first and second derivative 
of I(x) with respect to x, respectively, as follows:

Applying Equations (15g-j), (4a-c), and (5a) into Equation (15f) yields the 
following FDM formulation: 

Figure 9 Sign conventions for moments, shear forces, displacements, 
and slopes for stiffness matrix

The rotation of the cross section is calculated using Equation (7c). The 
bending moment and the shear force are calculated using Equations (2a), 
(4c), (5a), and (15g), and Equations (2b), (4b-c), (5a), (15i), and (15g) as 
follows:

Analysis of a tapered beam at positions of discontinuity 

M-W FDM approximation

Concentrated loads (force P and moment M*) are applied at point i (see 
Figure 4). A change in grid spacing is also assumed at this position. As 
described in section 3.1.1.5, an opening of the beam at point i introduced 
additional points (points ia and id) in the opening, as represented in Figure 
8a,b.

The additional points are ia and id, and the unknowns are wia, Mia, wid, 
and Mid.

The continuity equations express the continuity of the deflection and slope 
(Equation (15d)), and the equilibrium of the bending moment and shear 
force (Equation (15c)) as follows:
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Equations (15a) with qi = 0 and (15b) are applied at any point on the grid 
(positions 1; 2; …n+1 of Figure 10). Considering the sign conventions 
adopted for bending moments and shear forces in general (see Figure 1) and 
for bending moments and shear forces in the element stiffness matrix (see 
Figure 9), we can set following static compatibility boundary conditions in 
combination with Equations (2b) and (14b):   

Considering the sign conventions adopted for the displacements and slope 
in general (see Figure 1) and for displacements and slope in the element 
stiffness matrix (see Figure 9), we can set following geometric compatibility 
boundary conditions in combination with Equations (2c) and (14b):

The number of equations is 2(n+1) + 4 +4 = 2n + 10. The number of 
unknowns is 2(n+3) + 4 = 2n + 10, especially 2(n+3) unknowns (M; W) 
at points on the beam and additional points at beam’s ends, and 4 efforts at  
beam’s ends (Vi; Mi; Vk; Mk). Let us define following vector

The combination of Equations (15a,b) applied at any point on the grid, 
Equations (19ad), and Equations (20ad) can be expressed with matrix 
notation as follows, the geometric compatibility boundary conditions 
(Equations (20ad)) being at the bottom.

The matrix Taa has 2n+6 rows and 2n+6 columns, the matrix Tab has 2n+6 
rows and 4 columns, the matrix Tba has 4 rows and 2n+6 columns, and the 
matrix Tbb has 4 rows and 4 columns. 

The combination of Equations (18), (22), and (23) yields the element 
stiffness matrix of the beam.

A general matrix formulation of K44 is as follows:  

In Equation (24b), 0 is a zero matrix with four rows and 2n+6 columns, I is 
the 4  4 identity matrix.   

The matrix T has 2n+10 rows and 2n+10 columns. The zero vector above 
has 2n+6 rows. 

(21)

(22)

(23)

(24a)

(24b)

33 element stiffness matrix: Assuming the presence of a hinge 
at the right end, the sign convention for bending moments, shear forces, 
displacements, and slope is illustrated in Figure 11.

The 33 element stiffness matrix in local coordinates of the tapered beam 
is denoted by K33.

The vectors of Equations (17a), (17b), and (18) become

The matrix K33 can be formulated with the values of the matrix K44 (see 
Equations (24ab)).   

K44 has 4 rows and 4 columns. The matrix Kaa has 3 rows and 3 columns, 
the matrix Kab has 3 rows and 1 column, the matrix Kba has 1 row and 3 
columns, and the matrix Kbb has 1 row and 1 column (a single value).

The combination of Equation (18) with the presence of a hinge at position k (Mk 
= 0), and Equation (25c) yields the matrix K33 as follows:

First-order element stiffness matrix of a uniform beam: The 
beam is divided in n parts of equal length h (l = nh) as shown in Figure 12.

Equation (6) with qi = 0 is applied at any point on the grid (positions 1; 2; 
…n+1 of Figure 12).

The static compatibility boundary conditions (Equations (19ad)) become

(26)

Figure 12  FDM discretization for 4x4 element stiffness matrix
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Figure 11  Sign conventions for moments, shear forces, displacements, 
and slope for stiffness matrix
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The geometric compatibility boundary conditions (Equations (20b,d)) 
become

Equations (20a) and (20c) stay unchanged.                                                                     
                                                                                      
Thus, the number of equations is n+9. The number of unknowns is n+5 + 4 
= n + 9, especially n+5 unknowns W (at points on the beam and additional 
points at beam’s ends) and 4 efforts at beam’s ends (Vi; Mi; Vk; Mk). 
The vector     becomes,	

The use of Equations (22) to (24b) yields the element stiffness matrix of the 
uniform beam.

Second-Order Analysis

The equation of static equilibrium can be expressed as follows:

The axial force (positive in tension) is denoted by N(x), and the stiffness 
of the elastic Winkler foundation by k(x). Let us also consider an external 
distributed axial load n(x) positive along the + x axis

Second-order analysis of a uniform beam within segments:  
A beam with constant stiffness in segments was considered. Substituting 
Equation (2a) into Equation (32) yields

Substituting Equations (4a), (4c), (4d), (5), and (5a) into Equation (33) 
yields the following governing equation,

Combining Equations (30) and (31) yields                                                                                                                    

(29c)

(30)

(31)

(32)

(33)

(34)

Equation (34) is applied at any point on the grid with spacing h. At point 
i, the external distributed axial load ni is calculated similarly to Equations 
(8gi). The transverse force T(x) is related to the shear force V(x) as follows:

The bending moment and the slope are formulated using Equations (7a) and 
(7c), respectively.

The analysis at positions of discontinuity is conducted similarly to that of 
the first-order analysis; however the shear force is replaced by the transverse 
force.

Second-order analysis of a tapered beam:

Similarly to the first-order analysis, the MW and W FDM approximations 
are considered.

MW FDM approximation:

Applying Equations (5), (5a), (14a-b), in Equation (32) yields The FDM 
formulation of Equation (32) as follows: 

Equations (37) and (15b) are applied at any point on the grid.

The combination of Equations (35), (15c), and (15d) yields the FDM 
formulation of the transverse force 

The slope is calculated similarly to Equation (15d).

The analysis at positions of discontinuity is conducted similarly to that of 
the first-order analysis; however the shear force is replaced by the transverse 
force. 

W FDM approximation: Substituting Equation (2a) into (32) yields

Developing Equation (38a) yields

(37)

(38a)

(38)

Substituting Equations (2b), (4b), (4d), (5), and (5a) into (35) yields the 
FDM formulation of the transverse force 

(35)
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Vibration analysis of the beam

Free vibration analysis: Our focus here is to determine the eigen 
frequencies of the beams. Damping is not considered. A second-order 
analysis is conducted; the first-order analysis can easily be deduced.

Free vibration analysis of a uniform beam within segments

The governing equation is as follows:

where  is the beam’s mass per unit volume, A is the cross-sectional area, 
N(x) is the axial force (positive in tension), n(x) is the external distributed 
axial load positive along + x axis, and k is the stiffness of the elastic Winkler 
foundation. A harmonic vibration being assumed, w*(x,t) can be expressed 
as follows:

Here,  is the circular frequency of the beam. Substituting Equation (41) into 
Equation (40) yields     

A uniform grid with spacing hk is assumed in the segment k.

Substituting Equations (4a), (4c-d), (5), and (5a) into Equation (42) yields 
the following governing equation:

Equation (43a) is applied at any point on the grid. The slope, the bending 
moment, and the transverse force are determined using Equations (7c), (7a), 
and (36), respectively. 

Let us define a reference length lr, a reference cross-sectional area Ar and the 
vibration coefficient  as follows

A change in grid spacing can be modeled by means of the reference length 
and the parameters lk.

For the special case of a uniform beam without an axial force or a Winkler 
foundation, Equation (43a) becomes

Effect of a concentrated mass, or a spring: We analyzed the 
dynamic behavior of a beam carrying a concentrated mass or having a 
spring, as represented in Figure 14.

The stiffness of the spring is Kp, and the concentrated mass is Mp.

(43e)

(41)

(42)

(43a)

(43d)

(40)

(38b)

(38c)

(38d)

Applying Equations (15g-j), (4a-d), and (5a) into Equation (15f) yields the 
following FDM formulation: 

Equation (38c) is applied at any point on the grid.

The bending moment and the rotation of the cross section are calculated 
using Equations (15l) and (7c), respectively.

The combination of Equations (15m), (35), and (4d) yields the transverse 
force. 

Second-order element stiffness matrix of a tapered beam: 
The MW FDM approximation is used in this section. However, the W 
FDM approximation could also be considered with appropriate equations 
(Equations (38c) with qi = 0, (15l), (7c), and (38d)).  

The sign conventions for bending moments, transversal forces, displacements, 
and slopes adopted for use in determining the element stiffness matrix in 
local coordinates is illustrated in Figure 13.

The FDM discretization is the same as Figure 10.  Equations (17a) becomes,

Equations (37) and (15b) are applied at any point on the grid (the distributed 
load qi being zero).

The static compatibility boundary conditions are expressed similarly 
to Equations (19ad); however in Equations (19a) and (19c), the shear 
forces are replaced by the transverse forces (Equation (38)). The analysis 
continues similar to the first-order element stiffness matrix (Equations 
(20a24b)).	  
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Figure 13  Sign conventions for moments, transversal forces, 
displacements, and slopes for stiffness matrix
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The continuity equations for deflection, slope, and bending moment are 
defined in Equations (10a), (10b), and (11), respectively. Equation (11) is 
applied with M*= 0. The reference length of the beam is lr ((Equation (43b)). 

Applying Equations (43d) and (44a-b), the balance of vertical forces in case 
of a concentrated mass or a spring yields

For the special case of a tapered beam without an axial force or a Winkler 
foundation, Equation (48a) becomes

Equations (15b) and (48a) are applied at any point on the grid. The slope 
and the transverse force are determined using Equations (15d) and (38), 
respectively.

Effect of a concentrated mass, a spring, or a springmass 
system

The analysis is conducted similarly to the section above (Equations (44a) to 
(45d)); the transverse forces Til and Tir in Equations (45a-c) are calculated 
using Equation (38).

W FDM approximation

Substituting Equation (47b) into (47a) and developments yields

Applying Equations (15g-j), (4a-d), (5a), (43c-d) into Equation (48d) yields

The bending moment, the transverse force, and the rotation of the cross 
section are calculated using Equations (15l), (38d), and (7c), respectively.

For the special case of a tapered beam without an axial force or a Winkler 
foundation, Equation (48e) becomes

Direct time integration method 

The direct time integration method developed here describes the dynamic 
response of the beam as multi-degree-of-freedom system. The damping 
(viscosity ) and an external loading p(x,t) are considered.  

Uniform beam : The governing equation is applied at any point on the beam 
as follows:

(49)

(48d)

(48e)

(48f)

(48b)

(48c)

Effect of a springmass system:

We analyzed the dynamic behavior of a beam carrying a springmass system, 
as represented in Figure 15. The deflection of the mass is denoted by wiM.

Applying Equations (43d) and (44a-b), the balance of vertical forces yields

A harmonic vibration being assumed, M*(x,t) can be expressed similarly to 
Equation (41). Equations (46a-b) become

Free vibration analysis of tapered beams: The governing equations 
are as follows:

MW FDM approximation:

A uniform grid with spacing h is assumed. The grid at the beam’s ends 
and at positions of discontinuity is the same as represented in Figure 8a,b. 
Substituting Equations (5a), (14a-b), and (43c) into Equations (47b) and 
(47a) yields Equation (15b) and the following equation:

The application of Equations (43b, d) yields

(48a)

The transverse forces Til and Tir are calculated using Equation (36). 

Figure 14   Vibration of beam having a concentrated mass and a spring

Figure 15   Vibration of a beam carrying a springmass system
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The derivatives with respect to x are formulated using Equations (4a), (4c), 
and (4d); those with respect to t (the time increment is t) are formulated 
considering a three-point stencil with Equations (50a-c), 

The governing equation (Equation (49)) can be formulated with FDM for x 
= i at time t. The FDM formulation of this equation is applied at any point 
of the beam at any time t using a seven-point stencil. Additional points are 
introduced to satisfy the boundary and continuity conditions. The boundary 
conditions are satisfied using a five-point stencil. Thus, the beam deflection 
w*(x,t) can be determined with the Cartesian model represented in Figure 
16. The bending moments M*(x,t) and the shear force V*(x,t) are calculated 
using Equations (7a,b).

Tapered beam: a similar analysis is conducted. The MW FDM 
approximation is applied; however, the W FDM approximation could also 
be considered with appropriate equations.  Thus, Equation (49) becomes

The derivatives with respect to x are formulated using Equations (14a-b); 
those with respect to t are formulated with Equations (50a-c).

The FDM formulation of Equations (51) and (46b) are applied at any 
point on the beam and at any time t using a five-point stencil and a three-
point stencil, respectively. Additional points are introduced to satisfy the 
boundary and continuity conditions. The boundary conditions are satisfied 

using a three-point stencil. Thus, the bending moment M*(x,t) and beam 
deflection w*(x,t) can be determined with the Cartesian model represented 
in Figure 17. The transverse force T*(x,t) is calculated using Equation (38).

With the direct time integration method developed here, the assumptions 
previously made can be verified, namely the separation of variables and the 
harmonic vibration (Equation (41)).

Extrapolation to approximate the exact result

The analysis with the FDM is an approximation. Generally, the accuracy 
of the results increases by increasing the number of grid points; therefore 
when the number of points is infinitely high, the results converge towards 
the exact results. It is assumed that the relationship between the results R 
and the number N of grid points on the beam follows a hyperbolic curve 
with the constants A, B, and C, as follows:

Three couples of values (Ni ; Ri) are then necessary to determine A, B, and 
C. Solving the following equation system yields A, B, and C. 

The exact result Re is approximated when the number of grid points
N  :

Higher-order interpolations can also be considered as follows: 

In this case five couples of values (Ni ; Ri) are necessary to determine A, B, 
C, D, and E.

(54)

(54a)

(52)

(51)

At the initial time t = 0, a three-point forward difference approximation 
(Equation (8b)) is applied

At the final time t =T, a three-point backward difference approximation 
(Equation (8d)) is applied

(50a)

(50b)

Figure 17 Model for the calculation of time-dependent 
vibration of a tapered beam
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of a uniform beam
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Results and Discussions

First-Order Analysis 

Beam subjected to a uniformly distributed load: 

We analyzed a uniform fixedpinned beam subjected to a uniformly 
distributed load, as shown in Figure 18.

The governing equation (Equation (6)) was applied at grid points 1, 2, 3, 
4, and 5. The boundary conditions were satisfied using Equations (7a) and 
(7c). The analysis and results are detailed in the supplementary material 
“fixedpinned beam subjected to a uniformly distributed load.” Table 1 
lists the results obtained with the classical beam theory (CBT) and those 
obtained in the present study. Furthermore, the results are presented for 
a three-point stencil (TPS) considered for the slope (Equation (14b)) and 
bending moment (Equation (14a)) when satisfying the boundary conditions. 
Finally the results for a number of grid points n = 4, 3, and 2 are presented.

The results of the present study are exact for the beam subjected to a 
uniformly distributed load regardless of the discretization, since the exact 
solution for the deflection curve is here a fourth-order polynomial which 
corresponds to the FDM polynomial hypothesis. It is noted that the use of 
a three-point stencil for the bending moment and slope yields less accurate 
results since here the finite difference approximations are derived based on 
a second-order polynomial hypothesis for the deflection curve, while the 
deflection curve is a fourth-order polynomial.

Beam subjected to a concentrated load: A uniform fixedpinned 
beam subjected to a concentrated load, as represented in Figure 19, was 
analyzed. 

The model showing the grid points at the position of the load, as shown in 
Figure 4a,b, was considered.

The governing equation (Equation (6)) was applied at grid points 1, 2, 3, 
4, 5l, 5r, 6, 7, and 8. The boundary and continuity conditions were satisfied 
using Equations (7a) and (7c), and Equations (10a) to (12), respectively.

Figure 18 	 Uniform fixedpinned beam subjected to a uniformly distributed load

Table 1   Bending moments (kNm) in the beam for various number of grid points: classical beam theory (CBT), 
present study, present study (three-point stencil (TPS)) 

Five-point grid 
4 × 2.0m 

Four-point grid 
3 × 2.67m 

  Position 
  X(m) 

CBT 
(exact results) 

Present 
study 

 

Present study 
 (TPS) 

Position 
  X(m) 

CBT 
(exact results) 

resent study 

0.0 -80.00 -80.00 -72.73 0.00 -80.00 -80.00 

2.0 0.00 0.00 5.45 2.67 17.78 17.78 

4.0 40.00 40.00 43.64 5.33 44.44 44.44 

6.0 40.00 40.00 41.82 8.00 0.00 0.00 

8.0 0.00 0.00 0.00    

Three-point grid 
2 × 4.0m 

Two-point grid 
1 × 8.0m 

  Position 
  X(m) 

CBT 
(exact results) 

resent study 
 

Position 
  X(m) 

CBT 
(exact results) 

Present study 

0.00 -80.00 -80.00 0.00 -80.00 -80.00 
4.00 40.00 40.00 8.00 0.00 0.00 
8.00 0.00 0.00    
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Figure 19  Uniform fixedpinned beam subjected to a concentrated load

Details of the analysis and results are presented in the supplementary 
material “fixedpinned beam subjected to a concentrated load.” Table 2 
displays the results obtained with the classical beam theory (CBT) and those 
obtained with the present study (FDM). In addition, the results for a three-
point discretization of the beam are also indicated.

The results of the present study are exact for the beam subjected to a 
concentrated load regardless of the discretization, since the exact solution 
for the deflection curve is here a third-order polynomial which is exactly 
described with the fourth-order polynomial FDM approximation. 

Beam subjected to a linearly distributed load: 

The analysis of a uniform fixedpinned beam subjected to a linearly 
distributed load, as shown in Figure 20, was conducted. The beam was 
calculated using a five-point grid and a six-point grid.

The analysis and results are detailed in the supplementary material 
“fixedpinned beam subjected to a linearly distributed load.” Table 3 shows 
the results obtained with the classical beam theory (the exact results) and 
those obtained in the present study (FDM).

As Table 3 shows, the results of the present study have a high accuracy. 
It is noted that the exact results cannot be get since the exact solution of 
w(x) for a linearly distributed loading is a fifth-order polynomial while the 
FDM approximation is a fourth-order polynomial. However the accuracy 
increases with increasing number of grid points. The exact results could 
be obtained by means of a polynomial refinement, namely a fifth-order 
polynomial hypothesis for the deflection curve, whereby non-centered finite 
difference approximations at beam’s ends would be used; further research 
will be needed for this purpose. 

Figure 20 	 Uniform fixedpinned beam subjected to a linearly distributed load

Table 2   Bending moments (kNm) in the beam: CBT, FDM

Eight-point grid
4  1.25m + 3  1.0m

Three-point grid
5.0m + 3.0m

Position
X(m)

CBT
(exact results)

FDM Position
X(m)

FDM

0.00 -12.89 -12.89 0.00 -12.89

1.25 -6.19 -6.19

2.50 0.51 0.51

3.75 7.21 7.21

5.00 13.92 13.92 5.00 13.92

6.00 9.28 9.28

7.00 4.64 4.64

8.00 0.00 0.00 8.00 0.00
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Table 3   Bending moments (kNm) in the beam: CBT, FDM 

Position
X(m)

CBT
(exact results)

FDM
Five-point grid

Difference


Position
X(m)

CBT
 (exact results)

FDM
 Six-point grid

Difference


0.00 -144.00 -144.38 0.26 0.00 -144.00 -144.15 0.10

2.00 4.50 4.22 -6.22 1.60 -17.92 -18.04 0.67

4.00 68.00 67.81 -0.28 3.20 51.84 51.75 -0.17

6.00 61.50 61.41 -0.15 4.80 72.96 72.90 -0.08

8.00 0.00 0.00 6.40 53.12 53.09 -0.06

     8.00 0.00 0.00

4   Tapered pinnedfixed beam subjected to a uniformly 
distributed load:

We analyzed a tapered pinnedfixed beam subjected to a uniformly 
distributed load, as shown in Figure 21.

At a position x1 of the beam the second moment of area I(x1) is defined as 
follows,

I1 is the second moment of area at x1 = L1. 
Given  L = 8.0m and L0 = 2.0m

First, the beam was calculated with the force method of the classical beam 
theory (exact results). Then, the calculation was conducted using the MW 
FDM and W FDM approximations with n = 9, 13, and 17 grid points. Due 

to the low rate of convergence of the W FDM approximation, the calculation 
was extended to n = 25, 33, 49, and 65 grid points. Details of the analysis 
and results are presented in Appendix A and in the supplementary material 
“tapered pinnedfixed beam subjected to a uniformly distributed load.” 
Table 4 lists the results obtained with the classical beam theory and those 
obtained in the present study (MW FDM and W FDM approximations).

Figure 21 	 Tapered pinnedfixed beam subjected to a uniformly distributed load    

(55)( )4
1 1 1 1( ) /I x I x L=

Position
  X(m)

CBT
(exact results)

Nine-point grid Thirteen-point grid Seventeen-point grid

MW FDM W FDM   MW FDM W FDM    MW FDM W FDM

0.00 0.00        0.00       0.00              0.00           0.00              0.00             0.00

2.00 17.36       17.70       1.37            17.45         14.40            17.39           16.04

4.00 -5.29        -4.61   -10.89             -5.11           -8.65            -5.22            -9.19

6.00 -67.93      -66.91   -63.02          -67.66         -67.66             -67.83            -71.91

8.00 -170.58     -169.22     -152.46          -170.22       -165.15            -170.44             -173.71

Table 4   Bending moments (kNm) in the tapered beam: CBT, MW FDM, and W FDM approximations

Position
  X(m)

CBT
(exact results)

25-point grid 33-point grid 49-point grid 65-point grid

W FDM W FDM W FDM W FDM

0.00 0.00 0.00 0.00 0.00 0.00

2.00 17.36 16.75 17.03 17.22 17.28

4.00 -5.29 -5.19 -5.38 -5.35 -5.33

6.00 -67.93 -66.03 -67.15 -67.63 -67.77

8.00 -170.58 -166.43 -168.68 -169.81 -170.15



Enliven Archive | www.enlivenarchive.org

	
	
2021 | Volume 4 | Issue 314

The results of this study are in good agreement with the exact results. 
The MW FDM approximation converges faster towards the exact results 
than the W FDM approximation. Interestingly, it is noted that the negative 
bending moments with W FDM converge towards the exact results in a non-
monotonous manner; this phenomenon should be investigated in further 
research.  

Second-Order Analysis 

The governing equation (Equation (6)) was applied at grid points. The 
analysis was carried out with n = 9, 13, and 17 grid points; then the results 
were extrapolated to obtain those for infinite grid points (Equation (54)). 
Details of the analysis and results are presented in the supplementary 

The results of the present study have a high accuracy. The extrapolation 
towards the exact results (n= ) delivers good results.

The FDM analysis was conducted using n = 9, 13, and 17 grid points. The 
results were then extrapolated to obtain those for infinite grid points. The 
analysis and results are detailed in the supplementary material “stability of a 
fixedpinned beam.” The buckling load Ncr is defined as follows:

Buckling load of a tapered beam: The buckling loads of tapered beams with 
various support conditions, as shown in Figure 21, were determined. 

The analysis was carried out with n = 9, 13, and 17 grid points; then the 
results were extrapolated to obtain those for infinite grid points. The analysis

and results are detailed in the supplementary material “stability of a tapered 
beam.” The buckling load Ncr is defined as follows:

The buckling factors  are listed in Table 7 for 0 = L0/L1 = 0.25

Values of the buckling factor  are listed in Table 6.

The results of the present study have a high accuracy.

(56)

Buckling load of a fixedpinned beam: We determined the 
buckling load of a fixedpinned beam, as shown in Figure 23.  

material “fixedfree beam subjected to a uniformly distributed load and 
compressive force.” Table 5 displays the results obtained with the classical 
beam theory (CBT) and those obtained in the present study (FDM).

Beam subjected to a uniformly distributed load and a 
compressive force:

A uniform fixedfree beam subjected to a uniformly distributed load and a 
compressive force, as shown in Figure 22, was analyzed.

2

1.50Nl
EI

= −

Figure 22 	 Fixedfree beam subjected to a uniformly distributed load and a compressive force

Table 6   Buckling factors of the beam: CBT, present study 

Table 5   Bending moments (kNm) in the fixedfree beam: CBT, FDM 

Figure 23 	 Buckling load of a fixedpinned beam 

Position
X(m)

CBT
(exact results)

FDM
Nine-point grid

FDM
  Thirteen-point grid

FDM
    Seventeen-point grid

FDM
N = 

0.00 -618.05 -625.45 -621.31 -619.88 -616.93

2.00 -451.63 -457.83 -454.36 -453.16 -450.70

4.00 -282.90 -287.31 -284.84 -283.99 -282.23

6.00 -127.54 -129.79 -128.53 -128.09 -127.20

8.00 0.00 0.00 0.00 0.00 0.00

2 2/ ( )crN EI lπ β= −

CBT
(exact results)

FDM
Nine-point grid

FDM
  Thirteen-point grid

FDM
    Seventeen-point grid

FDM
n= 

0.699 0.7176 0.7073 0.7038 0.6963

(57)2 2
1 / ( )crN EI lπ β= −
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Table 7   Buckling factors  of tapered beams with 0 = L0/L1 = 0.25

Free vibration analysis of a fixedfixed beam
The natural frequencies of a fixedfixed beam were determined. The 
analysis was conducted with n = 9, 13, and 17 grid points. Then the results 
were extrapolated to obtain those for infinite grid points. Details of the

Free vibration analysis of a tapered freefixed beam: 

The natural frequencies of the tapered freefixed beam represented in Figure 
24 were determined.

At a position x1 of the beam, the second moment of area I(x1) is defined 

A1 being the cross-sectional area at x1 = L1. The analysis was conducted 
using the MW FDM and W FDM approximations with n = 9, 13, and 17 grid 
points. Due to the low rate of convergence of the W FDM approximation, 
the calculation was extended to n = 25, 33, 49, and 65 grid points. The 
analysis and results are detailed in the supplementary file “vibration analysis 
of a tapered freefixed beam.”

The vibration frequency  is defined as follows (definition adopted from 
Torabi [3]).

Table 9 lists the results obtained by Torabi [3] and those obtained in the 
present study.  

(59)

analysis and results are listed in the supplementary file “vibration analysis of a 
fixedfixed beam.” The coefficients  (Equation (43c)) are displayed in Table 
8 below. The results of the present study have a high accuracy.

similarly to Equation (55). The cross-sectional area A(x1) and the parameter 
A(x) (Equation (43c)) are defined as follows:

FDM
Nine-point grid

FDM
 Thirteen-point grid

FDM
Seventeen-point grid

FDM
n= 

 Pinnedpinned 4.0255 4.0249 4.0167 4.0263

Pinnedfixed 2.8403 2.8411 2.8268 2.8396

Freefixed 5.1245 5.1284 5.1310 5.1452

Fixedfixed 2.4584 2.2153 2.1017 1.7884

Table 8   Coefficients  of natural frequencies (first mode) of a fixedfixed beam

CBT
(exact results)

FDM
Nine-point grid

FDM
 Thirteen-point grid

FDM
 Seventeen-point grid

FDM
n= 

22.40 22.00 22.21 22.28 22.43

Figure 24 	 Vibration analysis of a tapered freefixed beam 

( ) ( )( )2 2
1 1 1 1 1 1( ) / (58) / (58 )AA x A x L x x L aβ=

Table 9   Coefficients T of natural frequencies (first mode) of a tapered beam 

2 1
4

1
T

EI
A l

ω λ
ρ

= ×

Torabi [3] Nine-point grid Thirteen-point grid Seventeen-point grid

MW FDM W FDM   MW FDM W FDM    MW FDM W FDM

  0 = 0.10 2.6842  2.7100  2.4954 2.6957  2.6100 2.6906  2.6450

  0 = 0.30 2.3471  2.3548  2.2331 2.3506  2.2925 2.3491  2.3156

  0 = 0.50 2.1504  2.1493  2.0766 2.1500  2.0776 2.1503  2.1311

  0 = 0.70 2.0165  2.0101  1.9762 2.0137  1.9983 2.0135  2.0062

  0 = 0.90 1.9166  1.9062  1.8995 1.9120  1.9090 1.9157  1.9123
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Torabi [3] 25-point grid 33-point grid 49-point grid 65-point grid

W FDM W FDM W FDM W FDM

    0 = 0.10 2.6842  2.6675  2.6750  2.6801  2.6819

    0 = 0.30 2.3471  2.3329  2.3391  2.3436  2.3451

    0 = 0.50 2.1504  2.1419  2.1457  2.1484  2.1494

    0 = 0.70 2.0165  2.0120  2.0140  2.0155  2.0160

    0 = 0.90 1.9166  1.9147  1.9156  1.9162  1.9164

The results of the present study are in good agreement with those presented 
by Torabi [3]. The MW FDM approximation converges faster towards the 
exact results than the W FDM approximation.

Conclusions

The FDM-based model developed in this paper enabled, with relative 
easiness, first-order analysis, second-order analysis, and vibration analysis 
of EulerBernoulli beams. The results showed that the calculations 
conducted as described in this paper were accurate; especially in first-order 
analysis of uniform beams, the results were exact for uniformly distributed 
and concentrated loads regardless of the grid. First- and second-order 
element stiffness matrices (the axial force being tensile or compressive) in 
local coordinates were determined. Tapered beams were also analyzed.

The following aspects were not addressed in this study but could be analyzed 
with the model in future research:

 Polynomial refinement (fifth-order polynomial, sixth-order polynomial …) 
for the derivation of finite difference approximations 

 Analysis of linear structures, such as frames, through the transformation of 
element stiffness matrices from local coordinates in the global coordinates.

 Second-order analysis of frames free to sidesway, the P- effect being 
examined.

 EulerBernoulli beams resting on Pasternak foundations.

 Elastically connected multiple-beam system.

 Warping torsion of beams, lateral torsional buckling.

 Classical plate theory (introduction of additional points at plate edges).

 Boundary value problem, initial value problem.

 Linear ordinary differential equation with constants or variable coefficients.

Limitations of the Study

 Large deformation theory

Supplementary Materials

The following files are uploaded during submission:

• “fixedpinned beam subjected to a uniformly distributed load”

• “fixedpinned beam subjected to a concentrated load”

• “fixedpinned beam subjected to a linearly distributed load”

• “tapered pinnedfixed beam subjected to a uniformly distributed load”

• “fixedfree beam subjected to a uniformly distributed load and compressive 
force”

• “stability of a fixedpinned beam”

• “stability of a tapered beam”

• “vibration analysis of a fixedfixed beam”

• “vibration analysis of a tapered freefixed beam.”
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