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The ability to provide initialed or individualized medicine to cancer patient 
largely depend on the ability to discover the different cancer subtypes. As 
advanced biological knowledge databases and multi-level omics datasets 
continue to accumulate, there is urgent need to integrate the current extensive 
biological knowledge with the omics data to decipher a natural mechanism 
that is responsible for deadly diseases [1].  The researchers sought to 
recommend an integrative sparse K-Means (IS-Kmeans) method to facilitate 
discovery of subtypes of diseases and cancer drugs mostly guided by past 
biological knowledge. Additionally, to achieve quick optimization, they 
relied on an algorithm that used an alternating direction method of multiplier 
(ADMM) [2]. The researchers made a comparison of the IS-Kmeans using 
three actual applications and simulations together with the current methods 
to illustrate its computational effectiveness, purposeful annotation of 
identified molecular features, feature selection, and high accuracy while 
performing clustering [3]. Despite being regarded as a single type of 
disease, contemporary transcriptomic investigations prove that each cancer 
category might include numerous sub-categories characterized by diverse 
response to treatment, rates of survival, and disease mechanism [4]. The 
cancer subtypes that have been comprehensively investigated include the 
ovarian, colorectal, and breast cancers as well as glioblastoma, lymphoma, 
and leukemia [5]. Since they demonstrate diverse outcomes and respond 
differently to treatment, these cancer subtypes usually have a strong clinical 
significance [6]. Nonetheless, a single omics or cohort analysis, for instance, 
the transcriptome usually is characterized by reproducibility and sample size 
limitation concerns.  

Lately, there has been a massive accumulation of huge volume of omics 
data in public depositories and databases such as the Sequence Read Archive 
(SRA) and Gene Expression Omnibus (GEO) among others [7]. Such sets 
of data offer extraordinary opportunities to disclose mechanisms of cancer 
since they combine multiple-level omics data types and numerous cohorts 
[8]. There have been tremendous successes which have been achieved in 
several applications which use omics integrative analysis [9]. Alternatively, 
the public databases have accumulated an incredible volume of biological 

information [10]. A suitable utilization of such past details for instance 
miRNA targeting gene database and pathway information can greatly help 
to provide guidance to ensure the omics integrative analysis is appropriately 
modeled [11].

In this case, different forms of clustering methods have been applied to 
achieve high-throughput experimental data such as microarray to establish 
the new subtypes of the disease [12]. Good examples of such methods include 
the mixture model-based techniques, nonparametric methods for assessment 
of single transcriptomic research, K-means clustering, and hierarchical 
clustering [13]. The reliability of the clustering analysis has been enhanced 
through the use of resampling and ensembling techniques [14]. The researchers 
used the iCluster method which integrates omics data to conduct clustering 
of cancer samples as well as a baseline method to make a comparison of the 
study [15]. The researchers are focused on identifying cancer sub-categories 
by using current biological knowledge to improve clarification and precision 
as well as concurrently perform integration of multi-level omics datasets [16].

The researchers are confident that discovering the cancer subtype is a critical 
step towards making sure that the cancer patients receive personalized 
treatment [17]. The current biological information is perfectly integrated 
into the IS-Kmeans model and subsequent sparse features can additionally 
be utilized to describe the features of the cancer sub-category in medical 
application [18]. The proposed model has several benefits, for instance, 
the integrative evaluation enhances the understandable regulatory flow, 
statistical power, and clustering precision between the diverse omics 
datasets [19]. Furthermore, the researchers used the overlapping tosso 
to take into consideration the current biological information [20]. The 
full use of external biological and inter-omics regulatory information 
greatly improved the analysis and precision of the cancer sub-category 
results [21]. The study findings determined that the adoption of the 
IS-Kmeans model is computational effective given the ADMM’S 
closed-form iteration updates as well as K-Means’ EM algorithm [22].
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The researchers took less not more than fifteen minutes to compute seven 
hundred subjects and 15,000 omics data over on a normal personal computer 
which contained a solitary computing thread; alternatively, the iCluster took 
nearly four hours [23]. Furthermore, they established that the IS-Kmeans led 
to superior interpretations of the sparse features [24]. Nonetheless, it was

determined that it had several limitations, for instance, the current biological 
information is susceptible to inaccuracies and the user can update them 
more frequently [25]. In addition, there is a possibility of including false 
biological details which might weaken the information which is contained in 
the data as well as produce compromised study results.

Table 1: Comparison of different methods using metabric breast cancer (Source: Tseng GC, Wing HW (2005) Tight Clustering: A Resampling-
Based Approach for Identifying Stable and Tight Patterns in Data. Biometrics 61: 10-16.)
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