Culinary Herbs and Spices: The Challenge of Determining their Significance in the Maintenance of Health

Elizabeth I Opara

School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK

Corresponding author: Dr. Elizabeth Opara, Associate Professor, School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK, Tel: +44-(0)-20-8417-2047; E-mail: e.opara@kingston.ac.uk

Received Date: 19th May 2017
Accepted Date: 20th May 2017
Published Date: 26th May 2017

Knowledge of the bioactive properties of a food’s constituents can be used to provide indications that the whole food confers benefit in the context of maintaining health by protecting against disease development. However, there are examples of studies in which the protective properties of bioactive constituents do not appear to manifest when the whole food is given/ consumed as part of an intervention [1,2]. Some may thus ask, what is the use of research on bioactive food constituents? However, a far more pertinent question is, how can such research be developed so as to provide further insights into the true benefit of the whole food?

Such a question is being asked of culinary herbs and spices, which are foods that are a rich source of bioactive compounds, especially polyphenols [3,4]. These foods have been in use for centuries both for culinary and medicinal purposes, and research over the past decade has reported on the diverse range of properties that they possess via their bioactive constituents [5,6]. There is now ample evidence that culinary herbs and spices are sources of constituents that possess antioxidant, anti-inflammatory, anti-tumourigenic, anti-carcinogenic, and glucose and cholesterol lowering activities as well as properties that affect cognition and mood [6-20]. However, the actual role of these foods in the maintenance of health, specifically with regards to protecting against the development of chronic non-communicable diseases, is as yet unclear.

Some progress is being made to address this lack of clarity as a result of asking questions that concern how culinary herbs and spices are consumed. More information is now available concerning habitual intake levels, which are predictably much lower than for other plant derived foods known for their protective properties, and which vary considerably due to factors that include under-reporting and recipe variety for a given dish [4,21,22]. There is now also literature on the impact of cooking, and digestion in vitro, on the antioxidant capacity and anti-inflammatory activity of culinary herbs and spices [12-14]. Studies show that although changes to these activities occur as a result of these processes, the nature of the changes is dependent on the cooking method and it may also be influenced by the type of model used to simulate digestion [23].

Studies are also beginning to address questions concerning the impact of combining culinary herbs and spices with each other as well as with other foods. For example, Li et al. [24] reported that a marker for oxidative stress, urinary malondialdehyde, was decreased in subjects who consumed spiced hamburger meat when compared to subjects who consumed the non-spiced counterpart. They also reported a ‘trend to decrease’ plasma malondialdehyde in those that consumed spiced hamburger meat. However, other studies show that combining culinary herbs and spices, or combining them with other foods does not always result in an increase in the activity measured. These studies indicate that a number of factors influence the impact of such combinations and include: the complexities of the matrices that result from these combinations; the number and amount/concentration of the individual constituents; the number of foods that make up the combinations; any processing the food combinations have undergone; and the type of methods used to measure the activity of interest [4,25-28].

When considering the true benefit of a food, the issue of bioavailability also needs to be addressed and as yet there is a paucity of data concerning the bioavailability of bioactive compounds in culinary herbs and spices. Preliminary in vitro studies on culinary herbs indicate that for starting amounts that are typical of those used in food preparation, only small percentages of their (the herbs’) total phenolic content and antioxidant capacity are made available [4]. Such findings suggest that any beneficial effect of these foods may, at best, be localised in the gut. The findings of Percival et al. [29] appear to support this suggestion based on antioxidant activity. They found that following the consumption of individual herbs and spices at amounts based on levels usually consumed in food, there was no increase in serum antioxidant activity. However, when bioavailability was measured based on protection against oxidative damage, and the expression of pro-inflammatory cytokines, ex vivo, some of the herbs and spices conferred protection. Two important observations that the authors of this study make are that: 1) The considerable inter- and intra-variability of subject serum antioxidant activity prevented statistical significance being achieved, suggesting that serum antioxidant activity is of very limited use when it comes to assessing the bioavailability of the herbs and spices.
investigated; and 2) The appropriateness of the biomarker could be linked to the constituents, within the herbs and spices, that are bioavailable.

In conclusion, research done to date suggests that culinary herbs and spices have a significant role to play in the maintenance of health however it also highlights that a multifaceted approach is needed to elucidate their importance. The design of future studies will need to address the issues raised by this research to take us closer to understanding the true benefit of these foods.

References

Curriculum Vitae

Name: Dr Elizabeth Opara

Qualifications

<table>
<thead>
<tr>
<th>Date Obtained</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1989</td>
<td>BSc (Hons) First Class, Medical Biochemistry, University of London</td>
</tr>
<tr>
<td>May 1993</td>
<td>D.Phil Biochemistry, Oxford University (Merton College)</td>
</tr>
<tr>
<td>June 2000</td>
<td>Postgraduate Certificate in Teaching and Learning in Higher Education, Kingston University</td>
</tr>
</tbody>
</table>

Career Positions Held to Date

<table>
<thead>
<tr>
<th>Dates</th>
<th>Posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 1993 – December 1994</td>
<td>Post Doctoral Research Fellow, Surgical Nutrition and Metabolism Laboratory, Dept of Surgery, State University of New York, Health Science Center, Syracuse, NY, USA</td>
</tr>
<tr>
<td>July 1995 – June 1998</td>
<td>Higher Scientific Officer, Food Science Laboratory, Norwich, UK</td>
</tr>
<tr>
<td>September 2000 – December 2004</td>
<td>Senior Lecturer in Human and Clinical Nutrition; Course Director for Nutrition BSc (Hons), Kingston University</td>
</tr>
<tr>
<td>January 2005 – December 2013</td>
<td>Principal Lecturer in Human and Clinical Nutrition, Field Leader for Nutrition</td>
</tr>
<tr>
<td>January 2014 -</td>
<td>Associate Professor, Field Leader for Nutrition</td>
</tr>
</tbody>
</table>

Membership of Professional Bodies/Professional Practice

<table>
<thead>
<tr>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991 –</td>
<td>Nutrition Society: Member since 1991</td>
</tr>
<tr>
<td>2004 -</td>
<td>Registered Nutritionist since 2004 (register managed by Association for Nutrition – AfN - since March 2010)</td>
</tr>
<tr>
<td>2008 -</td>
<td>Assessor for the UK Voluntary Register for Nutritionists (UKVRN)</td>
</tr>
<tr>
<td>2011-</td>
<td>Member of AfN Continuing Professional Development (CPD) Working Group and CPD assessor</td>
</tr>
<tr>
<td>2011-</td>
<td>Member of AfN Nutrition Science Working Group</td>
</tr>
</tbody>
</table>

Current Teaching and Administrative/Management Responsibilities

Undergraduate Teaching Responsibilities
Human Nutrition, Clinical Nutrition, Food Toxicology, Food Safety, Food Biotechnology, Research Methods and Skills.

Postgraduate Teaching Responsibilities
Research Methods and Skills

Course Administration/Management Responsibilities
Nutrition Field and Team Leader, Course Director for Nutrition BSc (Hons) Full Field and Joint Honours, Personal Tutor and Module Leader

External Examiner Responsibilities:
St Mary’s University College (2009 - 2013): BSc/BA (Hons) Nutrition
University of Worcester (2010 - 2014): BSc (Hons) Nutrition
Research

Research Expertise

Bioactive compounds in culinary and medicinal plants

Research Group Membership

Theme leader for the Sport, Exercise, Nutrition and Public Health Research Group: http://sec.kingston.ac.uk/research/research-groups/senphrg/
Core member of the Cancer Research Group: http://sec.kingston.ac.uk/research/research-groups/crg/

Journal Reviewer

Reviewed papers for:
International Journal of Molecular Science
Journal of Agricultural and Food Chemistry
Journal of Food Biochemistry
Journal of Medicinal Plant Research
Journal of the Science of Food and Agriculture
Natural Product Research
Nutrition
Plant Foods for Human Nutrition
The British Journal of Nutrition

Member of the Editorial Advisory Board for Nutrition (The International Journal for Applied and Basic Nutritional Sciences): http://www.journals.elsevier.com/nutrition/editorial-board/

Member of the editorial board for Journal of Dietetics Research and Nutrition http://www.enlivenarchive.org/dietetics-research-nutrition.php

Completed Projects: PhD / MSc by Research Degrees

MSc by Research: Immunology of Human Breast Milk Kom Paramasivam (2006)
Ph.D. Impact of Chinese Herbal Remedies on Tumour Biology Shaun Willimot (2007)
MSc by Research: Bioavailability of Chinese Herbal Remedies Elena Panagiotou (2007)
Ph.D. The impact of digestion and gut bioavailability, in vitro, on the polyphenolic associated activity of cooked culinary herbs Magali Chohan (2011)

Current Projects: PhD

Elucidation of mechanisms by which culinary herbs and spices exert the inhibitory action of the growth of colorectal cancer cells in vitro Andrius Jaksevicius (commenced Nov 2013)

Research Student Examining

A Holloway PhD Kingston University: Antimicrobial effects of white tea extracts in combination with putative adjuncts against Staphylococcus aureus and other microbes of importance (November 2013)

Tamsyn Thring PhD Kingston University: Method development and application for the assessment of the anti-ageing and antioxidant properties of herbal remedies (December 2011)
Consultancy

Sport, Nutrition and Exercise Consultancy: http://sec.kingston.ac.uk/services-for-business/research-and-consultancy/sport-and-exercise-consultancy/

Output (Papers and Presentations – from 2004)

Chohan, Magali, Naughton, Declan P. and Opara, Elizabeth I. (2014) Determination of superoxide dismutase mimetic activity in common culinary herbs. SpringerPlus, 3(578), ISSN (print) 2193-1801

Opara, Elizabeth I. and Chohan, Magali (2014) Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. International Journal of Molecular Sciences, 15(10), pp. 19183-19202. ISSN (print) 1422-0067

Baker, I., Chohan, M and Opara E.I. The impact of cooking and digestion on the antioxidant capacity and polyphenol content of common culinary herbs. Presented at the Nutrition Society Summer Meeting, Reading, UK, July 2011 Winner of Best Poster Communication Prize

Opara EI. Anticancer activity of Chinese Herbal Remedies. Presented at the West Focus Meeting on the Modernisation of TCM Brunel University, April 2006
Submit your manuscript at http://enlivenarchive.org/submit-manuscript.php

New initiative of Enliven Archive

Apart from providing HTML, PDF versions; we also provide [video version](http://enlivenarchive.org/submit-manuscript.php) and deposit the videos in about 15 freely accessible social network sites that promote videos which in turn will aid in rapid circulation of articles published with us.

Willimot S., Barker J., Jones L. and Opara E.I. Isolation of Tumour Modulatory Compounds in Chinese Herbal Remedies Through Activity-Guided Fractionation (Poster 073) [Presented at the GA 53rd Annual Conference, Florence, Italy, August 2005](http://enlivenarchive.org/submit-manuscript.php)

Google Scholar Publications List:

https://scholar.google.co.uk/citations?sortby=pubdate&hl=en&user=WOR14W4AAAAJ&view_op=list_works&cstart=0&pagesize=20

Other Outputs

Papers/abstracts submitted

Schwikkard Sianne L, James, Emily E, Mulholland, Dulcie A, Knirsh, Walter, Corson, Timothy, Jaksevicius, Andrius, and Opara, Elizabeth Novel, Bioactive Homoisoﬂavonoids from a Madagascan Rhodocodon species (Hyacinthaceae, sensu APG II) [submitted for presentation at GA 2015 BUDAPEST, 63rd International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research, August 2015](http://enlivenarchive.org/submit-manuscript.php).