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The estimated new cases of ovarian cancer in the United States of America 
(USA) in 2014 is 21, 980, and the estimated deaths is 14,270 [1].  It ranks 
5th overall for cancer death in women, counting for 5% of all cancer deaths 
in women (lung, breast, colorectal, pancreatic are 1-4 respectively). At time 
of diagnosis, 15% of the total cases are localized, 18% are regional, and 
61% are distant. In 2011, there were an estimated 188,867 women living 
with ovary cancer in the United States.  The Standard treatment of ovarian 
cancer consists of surgical resection of disease followed by taxane and 
platinum-based chemotherapy which yields a partial response rate of about 
80% and a complete response rate of 40%-60% in patients with advanced 
disease [1]. However, the recurrence rate is approximately 70% and five-year 
survival is 45% in patients with advanced disease [3-5].  It appears that 
the majority of ovarian cancer cells are initially chemosensitive as evidenced 
by the initial response rates.  However, the high recurrence rates suggest 
development of chemoresistance. It is thought that some cells are not killed 
by chemotherapy, or they repopulate after exposure to chemotherapeutic 
agents. These cells have been described as ovarian cancer stem cells (CSCs). 

The CSCs are progenitor cells [6,7], and its markers have been shown 
to be upregulated in cells growing in tumorspheres.  In ovarian cancer, 
this spheroid tumor cells are thought to be related to the spread of cancer 
and metastasis in the peritoneal cavity. CSCs have been shown to self-
renew, differentiate, and metastasize [8]. In addition,  it was observed 
that treatment with chemotherapeutic agents results in increased drug-
resistant CSCs and this leads to recurrence. Certain types of blood cancers 
have normal stem cells, but normal ovarian stem cell are unknown [6].

Cancer Stem Cells Markers and its Significance

There are no specific ovarian CSCs markers and researchers rely on protein 
markers identified from other malignancies. These some of these proteins 
include CD44, CD133, CD117, ALDH1A1, and EpCAM. CD44 is a receptor 
that is involved in cell-cell and cell-matrix interactions and affects cellular 
growth, differentiation, and motility.  It has been shown that CD44+/
CD117+ cells had increased chemoresistance to taxane and platinum-based 
chemotherapy, and the ability to self-propagate [9].  It was noted that 
CD44+ cells were enriched in ovarian cancer patient ascites and once 
isolated and xenografted gave rise to tumor with both CD44+ and CD44- 
cells [10]. There are several strategies to target the CD44 receptor, which 
include binding to hyaluronic acid and osteopontin, a protein over-expressed 
in ovarian cancer, and contribute to receptor tyrosine kinase activation [11]. 
CD133 is a trans-membrane glycoprotein, and was shown that the amount of 
CD133 positive cells was higher in ovarian carcinoma than in normal ovarian 
tissue [12]. The ability of CD133+ cancer cells to generate both CD1333+ 
and CD133- cells has been reported [13].  In addition, CD133 observed to 
be involved in increased tumor formation, increased chemoresistance, and 
the ability to recapitulate the original heterogeneous tumor [14].  CD117, also 
known as stem cell growth factor receptor. It has been shown to be involved 
in apoptosis, cell differentiation, proliferation, and cell adhesion [15]. CD117 
was observed to have high expression in ovarian cancer cells [16], and 
cells expressing CD117 are highly tumorigenic in mouse models [17].  The 
Wnt/β-catenin pathway plays a role in the development of chemoresistance 
is activated by CD117 [18].
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ALDH1A1 contains 19 enzymes that function as cell protectors from 
carcinogenic aldehydes [19].  Landen et al. [20] showed its association 
with chemoresistance in ovarian carcinoma. Cells that are double positive for 
CD133 and ALDH1A1 have a great ability to develop tumors in mouse models 
[21]. It has observed, that metformin decreased the population of ALDH+ cells 
in ovarian cancer cell lines and decreased the formation of tumor spheres in 
patient tumors [22].  EpCAM (CD326) is a transmembrane glycoprotein,  and 
has  been shown to have oncogenic signaling properties.  Higher expression 
of EpCAM has been observed in metastatic ovarian tumors [23], and it is 
involved in epithelial to mesenchymal transition leading to metastasis [24].  
CD24 is a cell membrane glycoprotein, and it was noted, that the movement 
of CD24 from the cell membrane to the cytoplasm in borderline ovarian 
tumors was associated with micro-invasion and omental implants, and 
shorter survival time in adenocarcinoma of the ovary [25]. Moulla et al. [26], 
showed that the transition from membrane to cytoplasmic CD24 expression 
was associated with a more aggressive phenotype in borderline tumors.

Therapeutic Approaches of Ovarian CSCs

The elimination of ovarian CSCs has been challenging in part due to 
heterogeneity, so the efficacy of any single drug is limited.   Combined 
treatments that target CSCs will be a novel direction in the future; however 
drug treatment for CSCs may increase the risk of toxicity, as CSCs share 
common features with normal stem cells. The therapeutic strategies in 
ovarian CSCs include the following

1.  Nonsurface Markers

Cell surface markers (CD 133, CD 44, CD 24, and CD 117) have been used 
to isolate putative CSCs. The development of antibody-drug conjugates has 
recently achieved marked success [27]. The development of specific therapies 
that target biomarkers of ovarian CSCs may improve oncogenic outcome and 
patient’s survival [28].  EpCAM is highly expressed in different tumor types, 
including colon, lung, pancreas, breast, head and neck, and ovary [29]. 
Down regulation of EpCAM may cause loss of cell-cell adhesion and promote 
epithelial mesenchymal transition (EMT) [30]. Catumaxomab, a monoclonal 
antibody against EpCAM is a trifunctional antibody, which can bind three 
different cell types, including tumor cells, T cells, and accessory cells (dendritic 
cell, macrophages, and natural killer cells) [31]. It has been used in phase III 
clinical trials in patients with malignant ascites [32]. In addition, two stem cell 
markers, Lin28 and Oct4, could serve as targeted therapy due to their roles 
in the maintenance of pluripotency in ovarian cancer [33]. Moreover, over 
expression of the Müllerian inhibiting substance (MIS) type II receptor has 
been reported in ovarian cancer cell lines [34].  MIS observed to inhibit the 
cell population with stem-like characteristics in ovarian cancer cell lines [35].

2.  Differentiation of Ovarian CSCs

To eliminate CSCs is to induce their differentiation, resulting in loss of their 
stemness property [36].   One must emphasize that , the understanding of 
regulation of differentiation processes is essential for designing new agents 
to eliminate CSCs. Yin et al. Observed,  that TWIST-1 played a marked role 
in triggering differentiation of epithelial ovarian cancer (EOC) [37].  It was 
reported that p53 can activate two miRNAs (miR-34a and miR-145). These 
miRNAs shown to prompt differentiation of human embryonic stem cells 
[38]. ].  It has been suggested that miRNAS may be a therapeutic target 
for cancer treatment [39].  In addition, retinoic acid, and its analogs are 
the most common differentiation agents. The all-trans-retinoic acid (ATRA)

can inhibit the proliferation and induce the differentiation via inhibition of 
Wnt/β-catenin pathway in head and neck squamous carcinoma CSC 
[40]. The clinical study of ATRA has shown an increased survival rate 
of patients with acute promyelocytic leukemia, but successful cases are 
limited in solid tumors [41]. Reduction of the growth of ovarian CSC via 
Carboplatin combined with three novel retinoid compounds was observed 
[42].  Moreover, linoleic acids can trigger adipocyte-like differentiation in 
many types of cancer cells, including ovarian cancer cell line SKOV3 [43].

3.  Niches of CSCs

Niches are microenvironments where CSCs reside, containing cell-cell, 
cell-extracellular matrix, and soluble factors that support the growth, 
progression, and metastasis of CSCs [44].   Bone-marrow-derived 
mesenchymal stem cells (MSCs) and derived cell types have been shown to 
secrete prostaglandin E2 and release various cytokines, which is important 
for the formation and progression of a tumor [45].   In addition, MSC 
affected metastatic ability and chemoresistance in two ovarian cancer 
cell lines: OVCAR3 and SKOV3 [46].  It was observed that tumorigenic 
ability of ovarian tumor cells was dependent on niches derived from 
human embryonic stem cells [47]. The hypoxic niches were beneficial 
for acquirement of stem-like properties of ovarian cancer cells [48].

4.  MicroRNAs (miRNAs)

They regulate gene expression at posttranscriptional level. Thus, miRNAs 
are involved in diverse biological processes, such as development 
and tumorigenesis [49]. The expression profile of miRNAs noted to be 
different between normal stem cells and CSCs (50, 51). MiR-214 was 
demonstrated to have the property of self-renewal and chemoresistance 
in ovarian CSCs [52]. In addition, miR-199a prevented tumorigenesis in 
xenograft model [53]. Moreover, the expression of miR-200a could reduce 
migrating ability of CD133+ ovarian CSCs. This was due to the inhibition of 
E-cadherin and ZEB2 [54].  To conclude, understanding the roles of CSCs 
in cancer therapy may improve the survival rate of ovarian cancer patients. 
It is worth-noting that, it would be difficult to effectively treat all advanced 
ovarian cancer patients. As, ovarian CSCs are heterogeneic, which leads 
to different sensitivities to the therapy used. It is reasonable to suggest, 
that combination therapy is the major direction for ovarian cancer treatment. 
The precision medicine dependent on different genomic characteristics of 
patients ought to be a more effective therapeutic method. In addition, the 
current advances in technology, such as next-generation DNA sequencing 
and mass spectrometry- (MS-) based proteomics, would enhance the 
development and implementation of ovarian cancer precision medicine. 
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