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Abbreviations

ADRSS: Automated Diabetic Retinopathy Screening System; AI: Artificial 
Intelligence; AMD: Age-related Macular Degeneration; AUC: Area Under 
the Curve; BMI: Body Mass Index; CNN: Convolutional Neural Network; 
DL: Deep Learning; DLA: Deep Learning Algorithm; DLS: Deep Learning 
System; DME: Diabetic Macular Edema; DR: Diabetic Retinopathy; ETDRS: 
Early Treatment Diabetic Retinopathy Study; FN: False Negative; FOP: 
Fundus on Phone; GPU: Graphics Processing Unit; ICDRS(S): International 
Clinical Diabetic Retinopathy Severity (Scale); ICER: Incremental Cost-

Effectiveness Ratio; ICO: International Council of Ophthalmology; IDP: 
Iowa Detection Program; IDRID: Indian Diabetic Retinopathy Image 
Dataset; IRMA: Intraretinal Microvascular Abnormalities; LMIC: Low-to-
Middle-Income Country; ML: Machine Learning; MeSH: Medical Subject 
Heading; NHMRC: National Health and Medical Research Council; NHS: 
National Health Service; NIH: National Institutes of Health; OCT: Optical 
Coherence Tomography; RPE: Retinal Pigmented Epithelium; ReLU: 
Rectified Linear Units; ResNet: Residual Neural Network; SROC: Summary

Abstract

Diabetic retinopathy is the most common microvascular complication of diabetes mellitus and one of the leading causes of blindness globally. Due to 
the progressive nature of the disease, earlier detection and timely treatment can lead to substantial reductions in the incidence of irreversible vision-
loss. Artificial intelligence (AI) screening systems have offered clinically acceptable and quicker results in detecting diabetic retinopathy from retinal 
fundus and optical coherence tomography (OCT) images. Thus, this systematic review and meta-analysis of relevant investigations was performed to 
document the performance of AI screening systems that were applied to fundus and OCT images of patients from diverse geographic locations including 
North America, Europe, Africa, Asia, and Australia. A systematic literature search on Medline, Global Health, and PubMed was performed and studies 
published between October 2015 and January 2020 were included. The search strategy was based on the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) reporting guidelines, and AI-based investigations were mandatory for studies inclusion. The abstracts, titles, 
and full-texts of potentially eligible studies were screened against inclusion and exclusion criteria. Twenty-one studies were included in this systematic 
review; 18 met inclusion criteria for the meta-analysis. The pooled sensitivity of the evaluated AI screening systems in detecting diabetic retinopathy 
was 0.93 (95% CI: 0.92-0.94) and the specificity was 0.88 (95% CI: 0.86-0.89). The included studies detailed training and external validation datasets, 
criteria for diabetic retinopathy case ascertainment, imaging modalities, DR-grading scales, and compared AI results to those of human graders (e.g., 
ophthalmologists, retinal specialists, trained nurses, and other healthcare providers) as a reference standard. The findings of this study showed that the 
majority AI screening systems demonstrated clinically acceptable levels of sensitivity and specificity for detecting referable diabetic retinopathy from 
retinal fundus and OCT photographs. Further improvement depends on the continual development of novel algorithms with large and gradable sets 
of images for training and validation. If cost-effectiveness ratios can be optimized, AI can become a financially sustainable and clinically effective 
intervention that can be incorporated into the healthcare systems of low-to-middle income countries (LMICs) and geographically remote locations. 
Combining screening technologies with treatment interventions such as anti-VEGF therapy, acellular capillary laser treatment, and vitreoretinal surgery 
can lead to substantial reductions in the incidence of irreversible vision-loss due to proliferative diabetic retinopathy.
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Receiver Operating Characteristic (curve); SiDRP: Singapore Diabetic 
Retinopathy Screening Program; TP: True Positive; US(A): United States 
(of America); VEGF: Vascular Endothelial Growth Factor; VGG: Visual 
Geometry Group; mtmDR: More Than Mild Diabetic Retinopathy

Introduction

Diabetes mellitus is a global epidemic that affects approximately 422 
million people globally and has been increasing rapidly in recent decades 
[1]. The traditional approach to caring for diabetes mellitus in diverse 
health settings, including primary, secondary and tertiary care facilities, has 
been ineffective in addressing diabetes-induced complications, resulting in 
limited access to screening resources, increasing disease incidence rates, 
and unfavorable outcomes in low, middle, and high-income countries [1]. 
Currently, innovative and novel methods of care must be developed in an 
effort to address the systemic effects of diabetes mellitus on the health of 
patients. Diabetic retinopathy, which affects one-third of diabetes mellitus 
patients, is the most prevalent diabetes-induced complication and causes 
preventable vision-loss if left untreated [2]. Specifically, diabetic retinopathy 
is a microvascular complication of diabetes mellitus that leads to the 
development of lesions that progressively damage to the retina over time 
[2]. Detecting diabetic retinopathy during its early stages is essential to 
prevent progressive vision loss. With an approximate incidence range of 2.4 
to 13.1%, diabetic retinopathy is the leading cause of vision loss in low-
to-middle-income countries (LMICs), with adults aged 18-64 constituting 
the most at-risk groups for the condition [3]. Public health interventions 
aimed at managing and identifying diabetic retinopathy in its early stages 
and increasing participation and access to screening and treatment services 
are crucial. 

Although substantial data regarding diabetic retinopathy pathology exists 
and a comprehensive guide has been developed for ophthalmologists and 
internists by the International Council of Ophthalmology (ICO) detailing 
evidence-based principles for diagnosis, definition, screening and referral 
criteria, follow-up, and management options, a lack of screening programs 
in many countries is contributing to increasing rates of preventable vision 
loss [4]. National diabetic retinopathy screening programs are not commonly 
incorporated in many countries because the implementation and maintenance 
of such programs requires substantial resources, and many patients are 
unaware that they present the condition [2,4]. Furthermore, attending 
recommended follow-ups for patients with diabetes is a challenge for those 
under financial pressure, or for those lacking any mode of transportation 
[2,4]. An additional contributor to the global ubiquity of diabetic retinopathy 
is the lack of resource availability for care and the cost of essential long-term 
treatment. For example, diabatic macular edema, which occurs when there is 
abnormal leakage of fluid in the macula from damaged blood vessels in the 
retina and commonly caused by diabetic retinopathy, requires long-term and 
expensive treatments including vascular endothelial growth factor (VEGF) 
injections [5]. Variable responses to treatment make caring for diabetic 
retinopathy-induced complications even more difficult and less reliable [3,5].

Framework for Diabetic Retinopathy Management and 
Clinical Gaps

Reducing the burden of diabetic retinopathy necessitates a balance of 
individual and collective preventive measures including intensive medical 

treatment for diabetes patients experiencing progressive vision loss, screening 
for undiagnosed diabetic retinopathy, to changes in transport or economic 
policies affecting the majority of the population [6]. The management 
of diabetic retinopathy can be improved by implementing particular 
interventions at different settings ranging from individual to population care 
[2,6].

Preventing diabetes mellitus is one of the most upstream methods of 
preventing diabetic retinopathy [7]. Strategies for doing so include but are 
not limited to tight glycemic control through dietary modifications, earlier 
detection by screening, physical activity promotion for high-risk groups, 
worksite behavioral interventions, changes to internal built environments 
and transport infrastructure, or fiscal policy to support access to healthy food 
[6,7]. Additional strategies include improving public awareness, developing 
evidence-based clinical guidelines and screening programs, and optimizing 
the utilization of anti-VEGF for progressive diabetic retinopathy [8]. 

The lack of sustainable diabetic retinopathy screening programs has formed 
a serious clinical gap for managing the condition [2,8]. In order to close this 
gap, sustainable screening programs must be developed globally so that 
diabetes mellitus patients can be cared for in accessible primary care settings 
[9]. Additionally, the advancement of risk prediction methods is necessary 
to ascertain which patients will likely develop vision-threatening diabetic 
retinopathy [7,9]. At present, not even ophthalmologists can predict which 
group of diabetic retinopathy patients are at increased risk of vision loss. 
Lastly, improvements in accessibility and treatments for those experiencing 
vision-loss from diabetic retinopathy is essential [9]. Such treatments include 
acellular capillary laser treatments, anti-VEGF injections, and vitreoretinal 
surgeries [5]. 

Despite the existence of solutions to address clinical gaps, significant barriers 
stand in the way of their implementation [10]. Establishing financially 
sustainable screening programs is a key challenge, particularly for LMICs that 
lack the resources to develop and maintain such efforts [10]. Additionally, the 
recruitment and training of retinal specialists remains a significant challenge 
as their demand far exceeds the number of professionals available to screen 
retinal images of diabetes mellitus patients [11]. 

With the incidence of diabetes mellitus and vision-threatening diabetic 
retinopathy rapidly increasing globally, it is imperative that novel screening 
methods that are accurate, cost-effective, and sustainable are developed.

Artificial Intelligence Application in Ophthalmology

In the field of ophthalmology, the application of artificial intelligence (AI) 
using machine learning (ML) and deep learning (DL) has been extensively 
investigated. Specific ocular conditions that have been assessed with the use 
of AI technologies include glaucoma, age-related macular degeneration, and 
non-proliferative and proliferative retinopathies [12]. Several applications of 
AI in optical coherence tomography (OCT) and retinal fundus photography 
have demonstrated high performance levels comparable to those of manual 
retinal graders and ophthalmologists [6,12]. DL technologies have become 
useful in identifying macular edema based on OCT images, which can be 
particularly useful when screening for late-stage diabetic retinopathy [13].
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Artificial Intelligence Application for Diabetic Retinopathy

One of the most promising methods for the large-scale management of 
diabetic retinopathy is the use of AI screening technologies. The success of AI 
screening systems largely depends on the presence of accessible nationwide 
screening programs in which diabetes mellitus patients are reminded to 
attend routine appointments [12,14]. The accuracy of such technological 
developments, as assessed by prior investigations, has surpassed clinically 
acceptable thresholds of sensitivity (number of true positive assessments 
over the number of all positive assessments reported) and specificity (number 
of true negative assessments over the number of all negative assessments 
reported). With recent advancements in ML and DL, countries across the 
globe are revisiting the incorporation of AI systems for diabetic retinopathy 
screening [9,14].

Diabetic retinopathy is primed for AI. Screening for the condition depends 
solely on the use of a single image, whether it be color retinal fundus 
photographs or OCT images [6]. Regardless of whether a diabetes mellitus 
patient is symptomatic or asymptomatic for diabetic retinopathy, the 
aforementioned imaging techniques will display the presence of hallmark 
morphological lesions so long as the condition is developing [15]. Trained 
AI systems are thus sufficient to screen for retinal lesions and can serve as 
an effective and efficient solution for the scarcity of diabetic retinopathy 
management [4,13]. An additional upside to automated diabetic retinopathy 
screening is that it does not replace the role of eye care professionals [14,15]. 
By establishing wide-spread and accessible screening programs, the rate 
of disease detection will likely increase in parallel with the subsequent 
demand for tertiary care from ophthalmologists [15]. Thus, the accessibility 
of eye care will increase and can encourage future investigations that seek 
to optimize and incorporate automated screening technologies into clinical 
settings. Furthermore, AI can be easily incorporated into diabetic retinopathy 
screening programs and thus acts as an enhancer rather than a disruptor to 
traditional screening methods [16].

The Current Progress of Applying AI for Diabetic Retinopathy 
Screening

Studies conducted by research groups across the globe have demonstrated 
clinically acceptable performances of AI screening systems in detecting 
diabetic retinopathy [17]. This research extends to multifaceted AI as well, 
with some groups developing a single system that screens for multiple 
eye diseases at once including diabetic retinopathy, age-related macular 
degeneration (AMD), and glaucoma [4,10,17]. Large external validation 
image sets consisting of retinal fundus or OCT photographs from diabetes 
mellitus patients in different countries have been used to demonstrate the 
performance of various AI systems [6]. Countries and continents which have 
provided validation sets include the United States, Europe, Africa, Australia, 
India, China, Korea, and Thailand [5,6,11]. 

In addition to demonstrating clinically acceptable performance levels, AI 
for diabetic retinopathy screening has met the standards of the Food and 
Drug Administration in the United States, the Health Sciences Authority in 
Singapore, and Conformité Européene-marking in the European Economic 
Area [18,19]. Securing regulatory approval serves as an important contributor 
to the progress of making AI application in eye care settings a commonplace 
practice [18]. 

Lastly, economic studies evaluating the financial feasibility of AI 
implementation have shown promising cost-effectiveness results. Based 
on the calculation of incremental cost-effectiveness ratios (ICERs), AI 
solutions demonstrate cost-saving benefits when compared to traditional, 
manual methods of retinal grading [20]. These results support the claim that 
automated screening services for diabetic retinopathy prevention are not only 
clinically proven to detect signs of disease with high accuracy, but also are 
economically sustainable and would benefit primary care settings that choose 
to adopt them [17,20]. 

Diabetic Retinopathy Progression and Pathology

Generally, diabetic retinopathy progresses according to particular parameters. 
Glucose and glycated hemoglobin (HbA1c) levels, blood pressure, lipid level, 
and smoking have near linear relationships with retinopathy progression 
[21]. Pregnancy may also cause rapid deterioration of the retina in those 
developing diabetic retinopathy [22]. In humans, it takes several years for 
diabetic retinopathy to reach a stage where it could threaten a person’s sight 
[21,22]. The retina itself is a light-sensitive layer of cells at the back of the 
eye, which converts incident light into electrical signals that are sent to the 
brain for image generation [23]. In order for the retina to function properly, 
it needs a constant supply of blood which it receives though a network of 
capillaries [21,23]. Over time, uncontrolled and consistent high blood 
glucose levels can damage retinal vasculature in three notable stages [24]. 
The first stage is known as background retinopathy during which tiny bulges, 
classified as aneurysms, develop in the blood vessels [25]. These bulges may 
cause bleeding, however at this stage of diabetic retinopathy development, 
they usually do not affect a person’s vision [22,25]. The second stage, pre-
proliferative retinopathy, is characterized by more considerable bleeding due 
to greater damage to retinal vasculature and potential hemorrhaging [26]. At 
this stage, vision will likely be impacted. The third stage, called proliferative 
retinopathy, demonstrates scar tissue and neovascularization in the form of 
minimally or nonfunctional acellular capillaries [21,26]. These new vessels 
that develop on the retina are structurally weak, cause further bleeding, and 
eventually progressive vision loss [26]. In addition to the aforementioned 
lesions, microglial infiltration, lipemia retinalis, intraretinal microvascular 
abnormalities (IRMAs), and ischemia serve as other hallmark indicators 
of diabetic retinopathy progression [27]. Anyone with type 1 or type 2 
diabetes mellitus is at risk of developing diabetic retinopathy, however, 
early detection with effective screening systems and subsequent treatment 
can prevent progressive vision loss. Figure 1 presents isolated healthy retinal 
vasculature. Figure 2 compares the vasculature of a non-diabetic versus a 
diabetic retina. The arrows indicate incident acellular capillaries that have 
resulted from neovascularization.
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Figure 1. — Trypsin digest micrograph of isolated non-diabetic retinal vascular

Figure 2. — Comparison of healthy versus diabetic retinal vasculature

Retinal architecture at 200x magnification. The left image (presented for comparative purposes) presents vasculature in a non-
diabetic retina. The right image displays neovascularization during the proliferative retinopathy stage. Arrows indicate areas of 
neovascularization.

Different Types of Imaging Techniques Used for Artificial 
Intelligence-Based Screening of Diabetic Retinopathy

Studies investigating the performance of AI systems in screening for diabetic 
retinopathy use two primary methods of retinal imaging: retinal fundus 
photography and OCT imaging.

OCT allows for high resolution imaging in the axial direction of the retina, 
resulting in cross-section visualization of vasculature, retinal cell layers, and 
limiting membranes [28]. Additionally, OCT has the capability of capturing 
retinal reflectance, in which light is delivered through the pupil and images 
are formed from the light reflected back from the retina [28]. The detection 
of reflectance allows studies to investigate biomarkers, such as inflammatory 
cytokines or neurotoxins released by microglial cells, that may affect 
visual function at the cellular level [28,29]. This is particularly useful when 
screening for small changes in the retinal cell layers. Thus, OCT imaging can 
capture the location, nature of retinal changes, thickness of the retina, and 
integrity of the surrounding structures [28,29].

Retinal fundus photographs document the current ophthalmoscopic 
appearance of a patient’s retina without detailed visualization of the retinal 
cell layers [30]. It is useful for detecting significant or large changes in retinal 
cell layers, however, is limited in its ability to detect small changes (unlike 
OCT imaging). A fundus camera is a specialized low power microscope with 
an attached camera that sends light rays through the pupil upon image capture 
[31]. If the illumination system of the fundus camera and the produced image 
are focused and aligned, the illuminating light rays will reflect off the retina 
and back into the objective lens of the camera. A retinal fundus image is 
subsequently generated [30,31]. 

Retinal fundus photography was used more widely prior to the optimization 
of OCT imaging [31]. Nowadays, OCT is commonly used due to its ability 
to detect subtle changes in the retina [31]. In the context of screening for 
diabetic retinopathy, neovascularization is an important biomarker for 
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detection in OCT and fundus photographs, whereas detecting changes in 
the retinal pigmented epithelium (RPE), as well as other cell layers, is more 
suited for OCT imaging. 

Datasets and Research Communities Used for the Development 
and Training of Artificial Intelligence Screening Systems

Four notable datasets and data scientist research communities were used 
across the various studies included in this review to externally validate 
diabetic retinopathy AI screening systems: Messidor-2, EyePACS, Kaggle, 
and E-Ophtha. 

The Messidor-2 dataset is a collection of 874 diabetic retinopathy examinations 
(1,748 fundus images) each consisting of two macula-centered fundus 
images (one per eye). It does not include annotations that define a diabetic 
retinopathy ground truth, which allows researchers to unbiasedly externally 
validate their respective AI systems of interest [32]. The Messidor-Original 
dataset consists of 529 examinations (1,058 retinal fundus images) that 
come in pairs or as single images [32,33]. In order to generate new Messidor 
datasets, diabetic patients were recruited Brest University Hospital in France 
between October 16, 2009 and September 6, 2010 [32]. The hospital’s 
Ophthalmology Department imaged eye fundi, without inducing dilation, 
using a Topcon TRC NW6 non-mydriatic fundus camera at a 45-degree field 
of view [32]. Only macula-centered images were incorporated in the dataset 
in order to remain consistent with Messidor-Original [33]. 

The EyePACS database consists of over five million retinal fundus images 
from diverse populations presenting different degrees of diabetic retinopathy 
severity [34]. Such a large variety helps AI algorithms recognize diverse 
retinas that exist in real-world settings globally. Major automated screening 
development studies have and are currently using EyePACS datasets to train 
and externally validate algorithms. 

Kaggle is an online community of data scientists and machine learning 
researchers that provide a large set of high-resolution retinal fundus images 
taken under a variety of imaging conditions [35,36]. Two images, one of each 
eye, from each subject are included in the dataset. Some images are displayed 
as one would see the retina anatomically [35]. For example, when viewing 
an image of the right eye, one would see the optic nerve on the right and the 
macula on the left side of the image [35,36]. Other images are demonstrated 
as seen through a condensing lens on a microscope: inverted as one sees 
in typical live eye exams. The Kaggle dataset is known for containing 
some images that contain artifacts and are out of focus, underexposed, or 
overexposed [36]. AI systems must function and provide accurate outputs in 
the presence of such noise and variation to be deemed clinically acceptable 
[22]. 

E-ophtha is a database of color retinal fundus images used specifically for 
diabetic retinopathy research. E-ophtha contains two datasets consisting of 
463 fundus images that demonstrate either exudates, microaneurysms, or 
hemorrhages [37]. The exudate database contains 47 images with exudates 
and 35 images with no lesions. The microaneurysm set contains 148 images 
with microaneurysms or small hemorrhages and 233 images with no lesions 
[38]. Thus, this dataset is particularly useful for training algorithms to 
recognize exudates, microaneurysms, and hemorrhages in fundus images 
[37,38]. 

Convolution Neural Networks Computation and Training 
Methodology

Convolution neural networks (CNNs) form the base of deep learning (DL), 
a subset of machine learning (ML) where the algorithms are inspired by the 
structure of the human brain [39,40]. CNNs take in data, train themselves 
to recognize the patterns in the data, then predict an output. They are made 
up of layers of neurons [40]. The first layer is known as the input layer 
which receives the input, the output layer predicts the final output, and the 
in between layers perform the majority of the computations required by the 
neural network [41].

In the context of diabetic retinopathy, CNNs are trained to recognize retinal 
lesions by training their algorithms with fundus and OCT images [40]. 
Figure 3 demonstrates a general example of how a trained CNN computes 
probabilistic lesion outputs and makes a correct prediction [39]. A section 
of retinal vasculature is presented to the CNN at 200 times magnification 
[42]. The arrows indicate diabetes-induced acellular capillary growth 
[41,42]. Each pixel of the image is fed as input to each neuron of the first 
layer. Neurons of one layer are connected to neurons of the next layer through 
channels, each of which is assigned a numerical value known as weights 
[43]. The inputs are multiplied to the corresponding weights and their sum 
is sent as input to the neurons in the hidden layer [42-44]. Each of these 
neurons is associated with a numerical value called the bias, which is then 
added to the input sum [43,44]. This value is then passed through a threshold 
function called the activation function. The result of the activation function 
determines if the particular neuron will get activated or not [45]. An activated 
neuron transmits data to the neurons of the net layer over the channels. In this 
manner, the data is propagated through the network [42,45]. This is called 
forward propagation. In the output layer, the neuron with the highest value 
fires and determines the output. The values represent a probability. In this 
example, the neuron correctly associated with acellular capillary recognition 
has the highest probability, hence that is the most likely output predicted by 
the neural network.

If the neuron had associated with an incorrect output, such as aneurysm 
or hemorrhage, it would be an indication that further training is necessary. 
During the training process, along with the input, the CNN also has the 
output fed to it [46]. The predicted output, whether correct or incorrect, is 
compared against the actual output to realize the error in prediction. The 
magnitude of the error indicates how wrong the CNN is and a positive or 
negative value suggests that the predicted value is either higher or lower than 
expected, respectively [46]. This information is then transferred backward 
through the neural network, known as back propagation [47]. Now based on 
this information, the weights are adjusted. This cycle of forward propagation 
and backward propagation is repeatedly performed with multiple inputs 
[47,48]. The process is continued until the weights are assigned such that the 
neural network can predict retinal lesions correctly in most cases [48]. This 
brings the training process to an end.
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Figure 3. — Convolutional neural network analysis of diabetic retinopathy-induced acellular capillary growth

The left-hand image displays the formation of acellular capillaries in the vascular architecture of a diabetic retina.

Convolutional Neural Networks Assessed by the Included 
Studies

Five different CNN architectures were used by the studies included in this 
review: AlexNet, Inception, Iowa Detection Program (IDP), Visual Geometry 
Group (VGG), and EyeArt. 

The AlexNet architectures consists of eight distinct layers: five convolutional 
layers and three fully connected layers [49]. AlexNet has three features that 
make it unique compared to other existing CNNs: overlapping pooling, 
rectified linear units (ReLU) nonlinearity, and multiple graphics processing 
units (GPUs). Normally, CNNs pool outputs of adjacent groups of neurons 
with no overlapping [49]. However, when overlapping was introduced 
in AlexNet, researchers observed a reduction in error by approximately 
0.5% and found that it is more difficult for architectures with overlapping 
pooling to provide inaccurate output predictions [50]. AlexNet uses ReLU 
instead of the hyperbolic tangent (tanh) function, which was traditionally 
used by CNNs [49,50]. Incorporating ReLU is particularly advantageous to 
quickening AI training time; ReLU-based systems are able to reach a 25% 
error on CIFAR-10, EyePACS, and Messidor datasets six times faster than 
systems using the tanh function [51]. In addition to faster training times, 
AlexNet also has the capacity to analyze larger models. AlexNet allows for 
multi-GPU training by putting half of its neurons on one GPU and the other 
half on another GPU [51].

Inception is a DL architecture consisting of CNNs that are 27 neuronal 
layers deep [52]. Inception V3 and Inception V4, which are constituents of 
the Inception family and referred to in this review by the eligible studies, 
possess important ML features including label smoothing, factorized 
7 x 7 convolutions, and the use of auxiliary classifiers to propagate input 
information to lower down in the network [52]. Label smoothing is a 
regularization technique for classification problems to prevent the Inception 

model from predicting outcomes too confidently during training and 
generalizing poorly [53]. Factorized 7 x 7 convolutions includes changes 
that factorize the first 7 x 7 convolutional layer into a sequence of 3 x 3 
convolutional layers. The term convolution itself refers to the mathematical 
combination of two functions to produce a third function (merging two sets of 
information). In the case of Inception V3 and Inception V4, the convolution 
performed on the input data, a fundus or OCT image, helps produce a feature 
map from which the CNNs can distinguish lesions that they have or are being 
trained to recognize [52,53]. Auxiliary classifiers are a component of the 
Inception architecture that improves the propagation of computations made 
by the large and deep Inception neural networks when receiving an input 
[54]. In the context of diabetic retinopathy, including auxiliary classifiers in 
the AI screening system improves the efficiency of translating an input into a 
probabilistic outcome of the identity of a retinal lesion [52-54]. 

IDP is an algorithm based on expert designed image analysis that uses 
wavelet transformations [55]. A wavelet is a mathematical function that is 
useful in image processing [55,56]. Wavelet compression works by analyzing 
an image and converting it into a set of mathematical expressions that can be 
decoded by a neural network to identify features of an image [55,56]. This is 
particularly useful when a CNN is fed an image containing large quantities 
or easily mistakable pieces of information [56]. In the context of diabetic 
retinopathy, if a fundus or OCT image is taken of an eye with many and 
diverse lesions, for example from the proliferative stage, IDP has the ability 
to distinguish between morphological structures with considerable accuracy 
with its wavelet feature [56]. 

VGG is a classical CNN based on an analysis of how to increase the depth of 
such networks [57]. VGG is characterized by its simplicity as it uses small 
3 x 3 filters, pooling layers, and a fully connected layer [57]. Applying 3 x 
3 convolutions on images with a 3 x 3 filter allows for the analysis of three-
dimensional images [58]. Additionally, they are used for blurring, sharpening, 
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edge detection, and the embossing of images [57,58]. The pooling feature of 
VGG allows the architecture to reduce the size of images while preserving 
their important characteristics [57]. Fully connected layers are simply the 
connection between one layer of neurons to another, as is a defining feature 
of CNNs in general [57,58]. 

The EyeArt system is a cloud-based AI eye screening technology used to 
detect different stages of diabetic retinopathy through automated analysis 
of patients’ color fundus images [59]. It is commonly used amongst 
endocrinologists, general practitioners, and diabetologists in primary care 
settings to rapidly and accurately screen for signs diabetic retinopathy within 
minutes [8]. EyeArt uses morphological image analysis with DL techniques 
to create an automated diabetic retinopathy screening system (ADRSS) 
engineered for large-scale deployment in the cloud [59]. EyeArt is known 
for its speed and accuracy as it is able to screen 100,000 patients in less than 
45 hours whereas human graders can screen retinal images of only 8 to 12 
patients per hour [59,60].

Population of Interest

People who have been diagnosed with type 1 or type 2 diabetes mellitus 
comprise the population of interest. The populations that have contributed 
to the performance results of AI screening systems in this review are from 
diverse countries and continents including the United States, the United 
Kingdom, Africa, India, China, Thailand, and Australia. Participants were 
recruited from a variety of healthcare settings including primary care 
practices, screening units and programs in urban centers, endocrinology 
outpatient services, and tertiary care diabetes and general hospitals. Patients 
with type 1 or type 2 diabetes mellitus were identified either through diabetes 
or pharmacy registers and were invited for screening studies. Participants 
consented for the studies and had retinal photographs taken of their eyes.

Case Definition and Other Important Terms

Due to varying criteria in different countries regarding whether a person has 
diabetic retinopathy, there is no global standard or checklist of symptoms 
that have been defined. However, based on the studies included in this 
review, there are a set of general indicators that are commonly used to screen 
for diabetic retinopathy: types 1 and 2 diabetes mellitus, diabetic macular 
edema, drusen, exudative retinal detachment, microvascular abnormalities, 
and retinal vessel occlusion [27,61]. Diabetic retinopathy results from 
microvascular lesions in the retinas of patients suffering from type 1 or type 2 
diabetes mellitus [62]. Type 1 diabetes is an autoimmune reaction that attacks 
one’s beta cells in the pancreas, leading to an inability to produce enough 
insulin and subsequently leads to consistently high blood glucose levels; it 
can have both genetic and environmental origins [63]. Type 2 diabetes occurs 
when one’s body becomes resistant to insulin and is associated with genetics 
and lifestyle choices [7]. Diabetic macular edema, a contributor to the 
progression of diabetic retinopathy, occurs when leaky vessels cause fluid to 
build up in the macula at the center of the retina; it is commonly screened for 
during diabetic retinopathy examinations [64]. Drusen is a defining feature of 
retinal degeneration and appear as small yellow or white spots on the retina 
that can be detected by ophthalmologists and trained AI screening systems 
with retinal photography [65]. Exudative retinal detachment develops when 
fluid collects in the subretinal space. This often follows the development of 

diabetic macular edema in diabetic retinopathy patients as fluid builds up 
on the retina [62-65]. Microvascular abnormalities associated with diabetic 
retinopathy include microaneurysms and hemorrhaging of retinal capillaries 
and neovascularization, the formation of new and structurally weak vessels 
(acellular capillaries). Lastly retinal vein occlusion, the blockage of blood 
vessels in the fundus of one’s eye, is a potential indicator of diabetic 
retinopathy that is screened for during examinations [66]. Occlusion could 
relate to the development of hyperlipidemia and hypertension in diabetes 
patients, which lead to subsequent microvascular complications [61,67].

Meaningful Measures of AI Screening System Performance

Sensitivity and specificity are the measures of AI performance that are 
assessed by the eligible studies. In this review, sensitivity values are reported 
as the percentage of screened participants with diabetic retinopathy who are 
correctly identified as positive by the AI screening system of interest [68]. 
Specificity values are reported as the percent of screened participants without 
diabetic retinopathy who are correctly identified as negative by the system of 
interest [68]. The “Royal Devon and Exeter National Health Service (NHS) 
Standards” are that a diabetic retinopathy screening program must achieve 
a sensitivity and specificity of ≥80% to be deemed clinically acceptable 
[69,70]. Area under a receiver operating characteristic (ROC) curve (AUC) 
was also reported by some of the included studies. In the context of using 
AI screening for diabetic retinopathy, the AUC is a measure of a particular 
screening system [71]. Specifically, the AUC can be interpreted as the average 
value of sensitivity for all possible values of specificity [71]. Alternatively, it 
can be understood as the probability that a randomly selected participant with 
diabetic retinopathy has a screening result indicating a greater likelihood 
of presenting the condition than that of a randomly chosen subject with 
diabetic retinopathy [71]. ROC curves demonstrate the sensitivity plotted as 
a function of the specificity. Each point on the ROC curve signifies a true 
positive-true negative pair [71].

Databases and Search Strategy

Systematic search methods were performed using Medline, Global Health, 
and PubMed and with MeSH terms as appropriate. Prior to finalizing a search 
methodology, pilot examination of studies was carried out in order to identify 
key MeSH terms used in relevant literature. Search filters were not used when 
selecting studies to avoid the exclusion of potentially admissible studies. 
Terms utilized in literature searches are as follows: (Table 1)

Selection of Studies

341 studies were initially gathered using the aforementioned search terms 
in their designated databases. The studies were imported to Mendeley and 
duplicate literature was discarded, leaving 224 records for assessment. The 
remaining records were screened by title-abstract review according to the 
inclusion and exclusion outlined in Table 2. Of the 224 records, 57 titles 
and abstracts were chosen for full-text evaluation. Following the completion 
of full-text evaluation and further consideration of inclusion-exclusion 
criteria, 21 studies were deemed eligible for inclusion in this study. Figure 
4 illustrates the methodology used for the identification, screening, and 
eligibility-determination of included publications.
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Medline
(Assessment OR Evaluation OR Testing) AND (Artificial Intelligence OR Convolutional Neural Network OR Deep Learning OR Machine 
Learning) AND (Screening) AND (fundus OR retina) AND (Imaging OR Optical Coherence Tomography) AND (Diabetic Retinopathy OR 
Diabetes-Induced Vision Loss OR Diabetes) AND (Progressive OR Advanced OR Worsening) AND (Prevention OR Protection)

Global Health
(Assessment OR Evaluation OR Testing) AND (Artificial Intelligence OR Convolutional Neural Network OR Deep Learning OR Machine 
Learning) AND (Screening) AND (fundus OR retina) AND (Imaging OR Optical Coherence Tomography) AND (Diabetic Retinopathy OR 
Diabetes-Induced Vision Loss OR Diabetes) AND (Progressive OR Advanced OR Worsening) AND (Prevention OR Protection)

Pubmed
((Assessment[MeSH] OR Evaluation[MeSH]  OR Testing[MeSH]) AND (Artificial Intelligence OR Convolutional Neural Network OR Deep 
Learning OR Machine Learning) AND (Screening[MeSH]) AND (fundus[MeSH]  OR retina[MeSH]) AND (Imaging[MeSH]  OR Optical 
Coherence Tomography[MeSH]) AND (Diabetic Retinopathy[MeSH]  OR Diabetes-Induced Vision Loss[MeSH]  OR Diabetes[MeSH]) AND 
(Progressive OR Advanced OR Worsening) AND (Prevention[MeSH]  OR Protection[MeSH]))

Table 1. — Databases and respective search terms used for literature search

Table 2. — Inclusion and exclusion criteria used to screen preliminary publications collected from literature search

________________________________________

Inclusion Criteria
________________________________________
Study uses AI to detect DR
Study provides grading comparisons between AI and manual graders
Study provides proof of DR development with retinal photographs
Study specifies retinal imaging technique(s) used for data collection
Study provides sensitivity and specificity values for included AI systems
Study uses a sample size of greater than 100 participants for real-world and external validation
Study uses real-world validation data set(s) to assess neural network performance
Study participants did not have a history of laser treatments or surgeries of the retina or injection into either eye
Study participants were not participating in another investigational eye study or actively receiving investigation product for DR or DME
Study provides a pathway of regulatory approval for AI screening system
Study specifies DR-induced lesions ascertained by AI screening system
________________________________________

Exclusion Criteria
________________________________________
Study is irrelevant to diabetic retinopathy
Study does not use neural networks for retinal analysis
Study does not provide grading comparisons between AI and manual graders
Study does not specify retinal imaging technique(s) used for data collection
Study does not provide sensitivity or specificity values for included AI systems
Study uses a sample size of less than 100 participants for real-world and external validation
Study does not use real-world validation data set(s) to assess neural network performance
Study participants have a history of laser treatments or surgeries of the retina or injection into either eye
Study participants were participating in another investigational eye study or actively receiving investigation product for DR or DME
Study does not provide a pathway of regulatory approval for AI screening system
Study does not specify DR-induced lesions ascertained by AI screening system
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Figure 4. — Screening method used for selection of studies

Results
Study Quality

Quality assessment of the included studies was performed using the National 
Institutes of Health (NIH) quality assessment tool. The guidelines of the 
tool were used to provide a number score out of 14 and overall rating for 
each of the included studies. The guidelines used for scoring consist of 14 
“yes” or “no” questions regarding the clarity, validity, design, methods, and 
cohort populations of the included studies. After assessing all appropriate 
study components, if the number of “yes” answers is equal to or greater than 

seven, a “Good” overall rating is assigned to the reviewed study. Scores 
from four to six or less than three are designated as “Medium” and “Poor” 
rated studies, respectively. Of the 20 included studies, 13 were designated 
as “Good” studies, seven as “Medium”, and none as “Poor” quality. “Yes” 
and “no” determinations were made to the best of the reviewer’s ability with 
consideration to all aspects of every study in order to decrease the likelihood 
of subjective errors (Table 3).
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Author Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Final 
Qual-
ity 
Score

Rating

Abramoff 2018 (1) Y Y Y Y Y Y Y Y Y N Y NA NA N 10 Good

Bellemo 2019 (2) Y Y Y Y Y N Y N Y N Y NA NA N 8 Good

De Fauw 2018 (3) Y Y Y N Y Y N Y Y N Y NA NA N 8 Good

Gargeya 2017 (4) Y Y Y Y Y N N Y Y N Y NA NA N 8 Good

Gulshan 2016 (5) Y Y Y Y Y Y Y Y Y N Y NA NA N 10 Good

Hansen 2015 (6) Y Y Y Y Y Y N N Y N Y NA NA N 8 Good

Kanagasingam 2018 (7) Y Y Y Y Y N Y Y Y N Y NA NA N 9 Good

Keel 2018 (8) Y Y Y Y Y Y N N Y N Y NA NA N 8 Good

Kermany 2018 (9) Y Y Y Y Y Y Y Y Y N Y NA NA N 10 Good

Li 2018 (10) Y Y Y Y Y N Y N Y N Y NA NA N 8 Good

Li 2019 (11) Y Y Y Y Y N N N Y N Y NA NA N 7 Good

Lim 2019 (12) Y Y Y Y Y Y Y Y Y N Y NA NA N 10 Good

Rajalakshmi 2018 (13) Y Y Y Y Y N Y N Y N Y NA NA N 8 Good

Raju 2017 (14) Y Y Y Y Y Y N Y Y N Y NA NA N 9 Good

Raumviboonsuk 2019 (15) Y Y Y Y Y N Y Y Y N Y NA NA N 9 Good

Sayres 2019 (16) Y Y Y Y Y Y N Y Y N Y NA NA N 9 Good

Son 2020 (17) Y Y Y Y Y N Y Y Y N Y NA NA N 9 Good

Ting 2017 (18) Y Y Y Y Y Y N Y Y N Y NA NA N 9 Good

Torre 2019 (19) Y Y Y Y Y Y Y N Y N Y NA NA N 9 Good

Tufail 2016 (20) Y Y Y Y Y Y N N Y N Y NA NA N 8 Good

Zeng 2019 (21) Y Y Y Y Y N Y Y Y N Y NA NA N 9 Good

Y: Yes, N: No, NA: Not applicable. (Q1. Was the research question or objective in this paper clearly stated? Q2. Was the study population 
clearly specified and defined? Q3. Was the participation rate of eligible persons at least 50%? Q4. Were all the subjects selected or recruited 
from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified 
and applied uniformly to all participants? Q5. Was a sample size justification, power description, or variance and effect estimates provided? 
Q6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? Q7. Was the timeframe 
sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed? Q8. For exposures that can 
vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or 
exposure measured as continuous variable)? Q9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and 
implemented consistently across all study participants? Q10. Was the exposure(s) assessed more than once over time? Q11. Were the outcome 
measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? Q12. Were the 
outcome assessors blinded to the exposure status of participants? Q13. Was loss to follow-up (response rate) after baseline 20% or less? Q14. 
Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and 
outcome(s)? Rating—(Good, Medium or Poor), Good = 7–14 yes; Medium = 4–6 yes; Poor = 0-3.

Table 3. — Quality assessment of included studies using the National Institutes of Health (NIH) tool

Study Characteristics

Relevant study characteristics for all 21 eligible studies were collected and 
are detailed in Table 4. The year of publication of the included studies ranges 
from 2015 to 2020. Studies were conducted in diverse continents including 
the North America, Europe, Africa, Asia, and Australia. Four of the included 
studies used OCT as the imaging modality [72-75] while the other 17 
implemented fundus photography [69,76-91]. Three studies reported national 
screening programs implemented by their respective countries including 
Australia’s National Health and Medical Research Council (NHMRC; [81]), 
Thailand’s Ministry of Public Health Program [86], and the United Kingdom’s 
National Health Service (NHS) Diabetic Eye Screening Program [90]. 
Diverse CNNs were assessed by the eligible studies: AlexNet [81], VGGNet 

[75,76,83,88], Inception V3 [74,78,80-82], IDP [79], EyeArt [84,90], and 
Inception V4 [86]. Datasets for the development and external validation 
of diabetic retinopathy AI screening systems were implemented by the 
included studies. The following sets were used for development: Messidor-2 
[72,79,86], the Singapore Diabetic Retinopathy Screening Program (SiDRP; 
[76]), LabelMe [81], EyePACS [71,85,89,91], and independent datasets using 
real life screening data [90]. The following datasets or sources were used for 
external validation: primary care practices [72], mobile screening units [76], 
E-ophtha [77,87], Messidor-2 [77,78], EyePACS [71,77,83, 89, 91], national 
eye studies [79], outpatient services [81], tertiary care diabetes hospital [84], 
Kaggle [85], general hospitals [86], the Indian Diabetic Retinopathy Image
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Dataset (IDRID; [87]), and regional screening programs [90]. Sensitivity, 
specificity, and AUC values reported by the included studies are also detailed 
in Table 4. If multiple datasets were used for the external validation of an 
AI screening system, separate sensitivity and specificity values are detailed

for each set. Two different scales were implemented by various studies to 
grade the severity of diabetic retinopathy upon screening: Early Treatment 
Diabetic Retinopathy Study (ETDRS) and the International Clinical 
Diabetic Retinopathy and Diabetic Macular Edema Severity (ICDRS) scale.

Table 4. — Characteristics of included studies
NR: Not Reported, ETDRS: Early Treatment Diabetic Retinopathy Study, ICDRS(S): Internatinoal Clinical Diabetic Retinopathy Severity (Scale), 
CNN: Convolutional Neural Network, NHMRC: National Health and Medical Research Council, OCT: Optical Coherence Tomography, VGG: Visual 
Geometry Group, ResNet: Residual Neural Network.

Study Country or 
Continent

Year of 
Publication

Imaging DR National 
Screening

Deep Learning 
AI Techniques

Data Set for 
Development

Data Set for 
Real-World/Ex-
ternal Validation

Referable DR 
diagnostic 
performance

Grading scale

Abramoff 2018 (1) USA 2018 OCT No AlexNet Messidor-2 10 primary care 
practices from 
across the USA

87.2% sensitiv-
ity;
90.7% specificity

ETDRS

Bellemo 2019 (2) Africa 2019 Fundus No VGGNet SiDRP 2010-
2013

5 mobile screen-
ing units in 
urban centers in 
Zambia

0.973 AUC ICDRS

De Fauw 2018 (3) UK 2018 OCT NR 3D U-Net 
architecture for 
segmentation 
network;
Customized 
CNNs for classi-
fication network

877 segmented 
scans for the 
segmentation 
network;
14,884 scans 
with diagnoses 
and referral 
decisions for the 
classification 
network

997 subjects 0.990 AUC NR

Gargeya 2017 (4) USA 2017 Fundus NR Customized 
CNNs

75,137 images E-ophtha: 405 
images
Messidor-2: 
1,748 images

E-Ophtha (no 
DR vs. mild DR) 
sensitivity/ speci-
ficity: 90%/94%
Messidor-2 (no 
DR vs. any stage 
of DR) sensitiv-
ity/ specificity: 
93%/87%

NR

Gulshan 2016 (5) USA 2016 Fundus NR Inception-V3 
architecture

128,175 images Messidor-2: 
1,748 images
EyePACS-1: 
9,963 images

Messidor-2 sen-
sitivity/specific-
ity: 96.1%/93.9%
EyePACS-1 sen-
sitivity/specific-
ity: 97.5%/93.4%

NR

Hansen 2015 (6) UK 2015 Fundus NR Iowa Detection 
Program (IDP)

Messidor-2 Nakuru Eye 
Study in Kenya: 
3,460 patients

91% sensitivity
69.9% specificity
0.878 AUC

NR

Kanagasingam 
2018 (7)

Australia 2018 Fundus NR Inception V3 
architecture

30,000 images 193 participants 100% sensitivity
92% specificity

NR

Keel 2018 (8) Australia 2018 Fundus NHMRC 
program

Inception V3 LabelMe 196 patients from 
2 urban endocri-
nology outpatient 
services

92.3% sensitivity
93.7% specificity

NR

Kermany 2018 (9) USA and 
China

2018 OCT NR Inception V3 108,312 images 1,000 images 97.8% sensitivity
97.4% specificity
0.999 AUC

NR

Li 2018 (10) Australia 2018 Fundus 
photo-
graph

NR Inception V3 71,043 images 35,201 images 92.5% sensitivity
98.5% specificity
0.955 AUC

NR

Li 2019 (11) USA and 
China

2019 OCT NR VGG-16 network 109,312 images 1,000 images 98.8% sensitivity
98.8% specificity
0.999 AUC

NR

Lim 2019 (12) Canada 2019 Fundus NR VGGNet 40,542 images EyePACS-1: 
101,710 images

91.3% sensitivity
91.1% specificity
0.965 AUC

NR

Rajalakshmi 2018 (13) India 2018 Fundus NR EyeArtTM 
software

NR 1 tertiary care 
diabetes hospital 
in Chennai, 
Remidio Fundus 
on Phone 

95.8% sensitivity
80.2% specificity

ICDRS
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Raju 2017 (14) India 2017 Fundus NR CNN EyePACS, 
35,126 partici-
pants

Kaggle data (n = 
53,126)

80.3% sensitivity
92.3% specificity
93.3% AUC

ICDRSS

Raumviboonsuk 2019 
(15)

Thailand 2019 Fundus Ministry of 
Public Health 
program

Inception V4 
(Google AI)

Messidor-2: 
1,748 images

7,517 patients 
from hospitals 
of health centers 
in 13 regions in 
Thailand

96.9% sensitivity
95.3% specificity
0.988 AUC

ICDRS

Sayres 2019 (16) USA 2019 Fundus NR CNN EyePACS, 
140,000 images

EyePACS-2, n 
= 1,958 partici-
pants

91.6% sensitivity
94.7% specificity
0.884 AUC

ICDRSS

Son 2020 (17) Korea 2020 Fundus NR CNN 95,350 images IDRID: 143 
images
E-ophtha: 434 
images

IDRid sensitivity/
specificity/AUC: 
92.6%/94.0%/0.98
E-Ophtha sensitivity/
specificity/AUC: 
93.6%/97.1%/0.965

NR

Ting 2017 (18) Zambia 2019 Fundus NR Ensemble of 
VGGNet with 
ResNet

76,370 images 4,504 images 92.3% sensitivity
89.0% specificity
0.973 AUC

NR

Torre 2019 (19) Spain 2019 Fundus NR CNN EyePACS data 
set, 75,650 
images

EyePACS data-
set: 3,000 images 
as testing and 
10,000 images as 
validation

91.1% sensitivity
90.8% specificity

ICDRSS

Tufail 2016 (20) UK 2016 Fundus Yes, NHS Dia-
betic Eye Screen-
ing Program

EyeArt Independent 
evaluations using 
real life screen-
ing data from a 
regional screen-
ing service

Region of Lon-
don, real world 
screening data;
EyeArt study 
consisting of 
30,000 patients 
across 3 different 
regional screen-
ing programs

93.8% sensitivity NHS Diabetic 
Eye Screening

Zeng 2019 (21) China 2019 Fundus NR CNN EyePACS, 
28,104 partici-
pants

EyePACS: 7,024 
participants

82.2% sensitivity
70.7% specificity
0.951 AUC

NR

Grading Scales Used to Assign Diabetic Retinopathy Severity 
upon Screening

ETDRS and ICDRS are the two grading scales reported by various 
studies in this review. ETDRS levels are classified as follows: level 10 (no 
evidence of diabetic retinopathy), level 15 (probable diabetic retinopathy, 
no microaneurysms), level 20 (microaneurysms only), level 35 (mild no 
proliferative diabetic retinopathy), levels 43 though 47 (moderate non-
proliferative diabetic retinopathy), level 53 (severe non-proliferative diabetic 
retinopathy), levels 60 through 71 (proliferative diabetic retinopathy), level 
80 (proliferative diabetic retinopathy with vitreous hemorrhage), and levels 
90 through 95 (ungradable images). ICDRS grading scores are as follows: 0 
(no apparent retinopathy), 1 (mild non-proliferative diabetic retinopathy), 2 
(moderate non-proliferative diabetic retinopathy), 3 (severe non-proliferative 
diabetic retinopathy), and 4 (proliferative diabetic retinopathy). 16 studies 
reported manual grading of fundus or OCT images in order to act as references 
or to evaluate AI screening accuracy against that of human analysis [71,73, 
75-79,81-84,86-90]. Manual graders included ophthalmologists, retinal 
specialists, and trained nurses (who received 3 to 6 months of training before 
receiving retinal grading accreditation).

Case Ascertainment

The studies included in this review utilize diverse criteria for the ascertainment 
of diabetic retinopathy cases. All 21 studies use a prior diagnosis of diabetes 
mellitus (either type 1 or type 2) as a potential contributor to the development 
of diabetic retinopathy [71-81,83-91]. The following are other indicators 
that were considered for case ascertainment: macular edema (19 studies; 
[71-79,81,87,91]), neovascularization (8 studies; [71,73-75,79, ,84,86,88], 
microvascular abnormalities including but not limited to microaneurysms 
and hemorrhaging (8 studies; [71,79,82,84,85,87,88,91]), drusen (6 studies; 
[72,74,75,80,87,88]), exudates (4 studies; [77,80,87,91]), increased retinal 
thickness (3 studies; [72,74,79]), retinal detachment (2 studies; [77,82]), 
increased HbA1c levels (2 studies; [72,76]), retinal pigmented epithelium 
(RPE) atrophy (1 study; [72]), enlarged optic cup to disc ratio (1 study; [72]), 
vitreous inflammation (1 study; [77]), choroidal infiltrate (1 study; [77]), 
retinal vessel occlusion (1 study; [82]), and choroidal infiltrate (1 study; [77]) 
(Table 5).
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Reference Case definition: symptomatic indica-
tors included as diagnostic criteria 
if specified

Examination, Labora-
tory and/or imaging 
technique? If yes: type 
of examination and/or 
imaging

Grading methods of case ascertainment; analysis protocols; 
additional data sources

Abramoff 
2018 (1)

Diabetic Retionpathy (DR); diagno-
sis of diabetes, enlarged cup to disc 
ratio, any drusen, any retinal pig-
ment epithelium atrophy, increased 
retinal thickness, macular edema, 
HbA1C level analysis

Yes,
Optical Coherence To-
mography (OCT), retinal 
fundus

More than mild diabetic retinopathy (mtmDR) participants 
were graded according to FPRC reading protocol; DR severity 
levels were ascertained according to Early Treatment Diabetic 
Retinopathy Study Severity Scale (ETDRS) and to Diabetic 
Macular Edema (DME)

Bellemo 2019 
(2)

DR; diagnosis of diabetes, HbA1C 
level analysis, macular edema

Yes,
Two-field (macular 
centered and retinal cen-
tered), color, non-stereo, 
45oretinal fundus pho-
tographs were taken for 
each eye using the Digital 
Retinopathy System, 
CentreVue

The retinal images were assessed by nurses and imaging 
technicians of non-medical background who were trained and 
supervised by ophthalmologists over a series of visits

Images were graded at the time of photography

The dataset provided patient demographics and risk factors (ex. 
age, sex, diabetes duration, diabetes type, BMI, systolic blood 
pressure, and diastolic blood pressure

De Fauw 2018 
(3)

DR; diagnosis of diabetes, neovas-
cularization, macular edema

Yes, 
OCT (Topcon 3D OCT)

Data were selected from a retrospective cohort of all patients 
who attended Moorfields Eye Hospital NHS Foundation Trust, 
which consists of 32 clinic sites serving urban, mixed socio-
economic and ethnicity population centered around London, 
United Kingdom

A validation subset of 993 scans (993 patients) was graded 
separately by three junior graders and ophthalmologists with 
disagreement in clinical labels arbitrated by a senior retinal 
specialist with over 10 years of experience and image reading 
center certification for OCT segmentation

Gargeya 2017 
(4)

DR; vitritis, optic disc edema, 
macular “leopard-print” choroidal 
infiltrate, exudative retinal detach-
ment, diagnosis of diabetes

Yes,
Retinal fundus

Deep learning network learned data-driven features from train-
ing data set, characterizing DR based on an expert-labelled 
ground truth; a panel of retinal specialists determined the 
ground truth for our data set before experimentation

Training data set was used to differentiate healthy fundi from 
those with DR

Information learned in automated screening method was visual-
ized readily through an automatically generated abnormality 
heatmap, highlighting subregions within each input fundus 
image for further clinical review

Gulshan 2016 
(5)

DR; macular edema, diagnosis of 
diabetes

Yes,
Retinal fundus

DR severity was graded according to the International Clinical 
Diabetic Retinopathy Severity (ICDRS) scale

Each retinal image was graded 3 to 7 times for DR, DME, and 
image gradability by a panel of 54 US licensed ophthalmolo-
gists and ophthalmology senior residents between May and 
December 2015

The AI algorithm was validated in January and February 2016 
using 2 separate data sets, both graded by at least 7 US board-
certified ophthalmologists with high intragrader consistency

Hansen 2015 
(6)

DR; macular edema, microvascular 
abnormalities (microaneurysms and/
or hemorrhages), neovasculariza-
tion, retinal thickening, diagnosis of 
diabetes

Yes,
Retinal fundus

First, human grading was performed for the presence or ab-
sence of DR, and for those with DR this was sub-divided in to 
referable or non-referable DR

The human graders were masked to the patient’s status to hav-
ing or not having diabetes

The automated Iowa Diabetic Retinopathy (IDP) detection 
software was deployed to identify those with DR and also to 
categorize the severity of DR

Table 5. — Case definition and case ascertainment used in included studies
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Kanagasin-
gam 2018 
(7)

DR; drusen, exudates (around 
the optic disc, the papillo-
macular area, and the macula), 
diagnosis of diabetes

Yes,
Retinal fundus

The study manually classified retinal images from the data sets into 2 
classes: adequate image quality for DR grading and inadequate image 
quality for DR grading. Then only adequate quality images were used 
to train the convolutional neural network (CNN) model

Potential bias: there were some images whose quality was ambiguous 
between adequate and inadequate, which was expected to influence 
some outcomes

Keel 2018 
(8)

DR; macular edema, diagnosis 
of diabetes

Yes,
Single-field, non-
mydriatic retinal fundus 
photographs

Adults with diabetes were recruited from two urban endocrinology 
outpatient clinics and fundus photographs were graded for referrable 
DR (≥ pre-proliferative DR)

Each participant underwent: (1) automated screening model; (2) 
manual model where retinal images were transferred to a retinal 
grading center and manual grading outcomes were distributed to the 
patients within 2 weeks of assessment

Each image was randomly assigned to a single ophthalmologist for 
initial grading and, following this, sequentially assigned to individual 
graders until three consistent grading outcomes were achieved

The mean assessment time for automated screening was 6.9 minutes

Kermany 
2018 (9)

DR; neovascularization, subreti-
nal fluid, retinal thickening, dru-
sen, macular edema, diagnosis 
of diabetes

Yes,
OCT images

An independent test set of 1,000 images from 633 patients was used to 
compare the AI network’s referral decisions with the decisions made 
by human experts

An occlusion test was performed on 491 images to identify the areas 
contributing most to the neural network’s assignment of the predicted 
diagnosis; this testing successfully identified the region of interest in 
94.7% of images that contributed the highest importance to the deep-
learning algorithm

Li 2018 
(10)

DR; macular edema, retinal 
hemorrhaging, intraretinal 
microvascular abnormali-
ties, retinal vessel occlusion, 
retinal detachment, diagnosis of 
diabetes

Yes,
Retinal fundus, two-field 
45o images were taken

Each image in the local data set was graded between three and eight 
times, with a mean agreement of 87.3% among 21 ophthalmologists

Graders were blind to the previous grading outcomes and a given 
image could be assigned to a grader only once; the consensus grading 
outcome was assigned as the final, conclusive grade of each image

The external data set contained retinal images from 14,520 eyes from 
three population-based studies

Li 2019 
(11) 

DR; macular edema, neovascu-
larization, drusen, diagnosis of 
diabetes

Yes,
OCT

A total of 207,130 retinal OCT images between 2013 and 2-17 were 
selected from retrospective cohorts of 5,319 adult patients

Only retinal images with a clear consensus annotation between 
ophthalmologists were taken into the sample and imported into the 
database

To avoid any errors in grading, the resulting evaluation set was further 
checked by another senior retina expert

Lim 2019 
(12)

DR; macular edema, diagnosis 
of diabetes

Yes,
Undialated-2field retinal 
fundus photography 
(macula centered and disk 
centered images);

The EyeArt AI eye screening system was evaluated against the clinical 
reference standard based on adjudicated grading of the 4-wide field 
photographs by expert graders at the Wisconsin Fundus Photograph 
Reading Center using the Early Treatment Diabetic Retinopathy Study 
(ETDRS) Severity Scale

Rajalak-
shmi 2018 
(13)

DR; macular edema, neovascu-
larization, vitreous/preretinal 
hemorrhage, microaneurysms, 
diagnosis of diabetes

Yes,
Retinal fundus photog-
raphy taken using a smart-
phone-based device

301 patients with type 2 diabetes underwent retinal photography with 
Remidio ‘Fundus on phone’ (FOP), a smartphone-based device, at a 
tertiary care diabetes center in India

Grading of DR was performed by the ophthalmologists using ICDRS

The sensitivity and specificity of automated grading were assessed and 
validated against the ophthalmologists’ grading
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Raju 2017 
(14)

DR; macula edema, intraretinal mi-
crovascular abnormalities, diagnosis 
of diabetes

Yes,
Retinal fundus

Using the CNN based approach for automatic screening of 
diabetic retinopathy, the prediction network was trained based 
on the publicly available Kaggle dataset

Raumviboon-
suk 2019 (15)

DR; macular edema, neovascular-
ization, diagnosis of diabetes

Yes,
Retinal fundus

Grades adjudicated by a panel of international retinal special-
ists served as the reference standard

The study was conducted to assess the screening performance 
of the Deep Learning (DL) algorithm compared to real-world 
graders for classifying multiple clinically relevant severity lev-
els of DR in the national screening program for DR in Thailand

Sayres 2019 
(16)

DR; macular edema, neovasculariza-
tion, microaneurysm, hemorrhage, 
diagnosis of diabetes

Yes,
Retinal fundus

Ten ophthalmologists (5 general ophthalmologists, 4 retina 
specialists, 1 retina fellow) read images for DR severity based 
on the ICDRS scale in each of 3 conditions: (1) unassisted; (2) 
grades only; (3) grades plus heatmap

Son 2020 (17) DR; hemorrhage, hard exudate, 
cotton-wool patch, drusen, macular 
hole, myelinated nerve fiber, cho-
rioretinal atrophy or scar, mem-
brane abnormalities, any vascular 
abnormality, retinal nerve fiber layer 
defect, glaucomatous disc change, 
nonglaucomatous disc change, 
diagnosis of diabetes

Yes,
Retinal fundus

57 ophthalmologists (including 16 certified retina specialists, 9 
certified glaucoma specialists, and 3 certified cornea special-
ists) were recruited as readers of macular-centered retinal 
fundus images

3 independent readings from 3 different readers were collected 
for each image; after completion of annotation, all datasets 
from the 3 reading systems were aggregated regardless of the 
subspecialities of the readers

Ting 2017 
(18)

DR; macular edema, neovasculariza-
tion, drusen, thinning or notching of 
the neuroretinal rim, hemorrhages, 
diagnosis of diabetes

Yes,
Retinal fundus

The Singapore National Diabetic Retinopathy Screening 
Program (SIDRP) uses digital retinal photography, a tele-oph-
thalmology platform, and assessment of diabetic retinopathy by 
a team of trained professional graders

For each patient, 2 retinal photographs (optic disc and fovea) 
were taken of each eye; All trained graders received 3 to 6 
months of training before certification and underwent annual 
reaccreditation

Torre 2019 
(19)

DR; macular edema, diagnosis of 
diabetes

Yes,
Retinal fundus

For every patient, right and left eye images are reported; all im-
ages are classified by ophthalmologists according to a standard 
severity scale

The dataset is split into two disjoint sets containing eye images 
of different patients, one for training and the other for testing

Tufail 2016 
(20)

DR; macular edema, diagnosis of 
diabetes

Yes,
Retinal fundus

Retinal images were manually graded following a standard 
national protocol; discrepancies between manual grades and AI 
system results were sent to a reading center for arbitration

Zeng 2019 
(21)

DR; macular edema, hard exudates, 
hemorrhages, microaneurysms, 
diagnosis of diabetes

Yes, 
Retinal fundus

The proposed AI model accepts binocular fundus images as 
inputs and learns their correlation to help to make a prediction

DR: Diabetic Retionpathy, OCT: Optical Coherence Tomography, mtmDR: more than mild Diabetic Retinopathy, ETDRS: Early Treatment Diabetic 
Retinopathy Study, DME: Diabetic Macular Edema, BMI: Body Mass Index, HbA1c: Glycated Hemoglobin, ICDR: International Clinical Diabetic 
Retinopathy, DL: Deep Learning.

Quality Analysis of the Included Studies: Limitations and 
Strengths

The primary objective of the included studies was to assess the abilities of 
particular AI systems of interest to screen for diabetic retinopathy in people 
with type 1 and type 2 diabetes mellitus. Each study demonstrated a notable 
limitation in some form relating to either its external validity or use of 
imaging methods to capture the fundus of OCT photographs. 

There are three key limitations regarding the external validity of the results 
reported by the included studies to the burden of diabetic retinopathy in 
their respective countries. The first limitation is not specifying the setting, 

environment, or type of community (for example, urban, suburban, or rural) 
from which study participants were recruited [72,76,81,83]. Environmental 
factors play a key role in the pathogenesis of diabetes mellitus. Such factors 
include air pollution, soil, water, stress, lack of physical activity, unhealthy 
diet, vitamin D deficiency, and exposure to particular pathogens. Although 
a genetic basis also exists, the time of onset of diabetes mellitus, and 
subsequently diabetic retinopathy, depends largely on the aforementioned 
environmental factors. Risk factors for diabetic retinopathy are complex, 
and past studies have demonstrated that the neighborhood environment in
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which patients live influences retinal microvascular complications associated 
with diabetes. The assessment of environmental factors that contribute to 
diabetic retinopathy is important in AI screening studies that do not specify 
the severity of the disease present in study participants. The severity or 
stage of the disease may impact the AI system’s reported sensitivity and 
specificity values, and so considering confounding variables such as setting, 
environment, and types of communities is important to produce accurate and 
generalizable results. The second limitation to the external validity of various 
studies is the recruitment of participants solely from a single location or 
limited geographic region [79,80,84]. Reporting performance metrics based 
on a limited population produces results that may not be representative or 
generalizable to a larger area of interest, for example the country in which the 
study was conducted. A study that reports sensitivity and specificity results 
of an AI screening system based on participants from a single city may be 
representative of the population of that geographic region. However, further 
studies assessing such performance metrics must be conducted on a larger 
scale in order to develop national AI screening programs that are based on 
nationwide data and evaluation. The third limitation to external validity of 
particular studies included in this review is not providing the geographic 
or demographic information of recruited participants [71,89,90,91]. Even 
if a particular AI screening system presents exceptionally high sensitivity 
and specificity results, because the geographic scope and demographic 
breakdown of its participants are unknown, one cannot estimate how 
the system will perform when presented with retinal scans of diabetes 
mellitus patients from a different region and demographic composition. 

The majority of the included studies considered diverse symptomatic 
indicators of diabetic retinopathy, used proper imaging methods, and properly 
reported the quantity and source of fundus or OCT images [71,74,75,77,78,  
80-91]. Reliable datasets designed for laboratory and clinical research that 
were used by the included studies for training and external validation are 
as follows: E-ophtha [77,87], Messidor-2 [77,78], EyePACS [71,78,83,89], 
DiaRetDB1 [80], Kaggle [80,85], and IDRID [87]. However, four studies 
[72,73,76,79] only provided the source of retinal images and failed to detail 
the sample size of the dataset used for the development, training, and external 
validation of their respective AI screening systems. For instance, Abramoff 
et al. reported that it obtained OCT images from 10 primary care practices 
from across the United States, however, did not report the quantity of images 
analyzed by its AlexNet AI system. The quantity of images evaluated by AI 
screening systems directly effects how well it learns to recognize particular 
lesions. Although the generalizability of results may seem promising from 
Abramoff et al., as it considers clinical settings from across the US, if the 
quantity of images analyzed was low, AlexNet may not have received 
sufficient training to recognize particular disease indicators, which could 
lessen the validity of its reported sensitivity and specificity results.

Despite presenting limitations, each study demonstrated notable 
strengths. Nine studies utilized large quantities of fundus or OCT images 
for the training and external validation of their respective AI systems 
[75,77,78,81,82,85,86,88,89]. Quantities ranged from 25,000 to over 
600,000 images. Using larger sample sizes allows for a more precise estimate 
of sensitivity and specificity results, can be more representative of the 
sample’s population, and can be used to better generalize results. In addition 
to using a sample size of greater than 200,000 retinal images, Li et al. [75], 

assessed the performance of its AI system of interest (VGG-16) over a four-
year period, to assess the consistency of sensitivity and specificity results. 
Three studies recruited population-based cohorts, which allowed for the 
estimation of AI screening performance (sensitivity and specificity) values 
in the reference populations [72,76,86]. For example, Ruamviboonsuk et 
al. [86] implemented over 25,000 retinal images from a community-based 
nationwide diabetic retinopathy screening program in Thailand and reported 
severity distributions based on the stage of diabetic retinopathy predicted by 
its Inception V4 AI system. Additionally, one study applied its AI system to 
screen for a disease other than diabetic retinopathy for external validation 
purposes [74]. Such an approach to external validation was unique to this 
study amongst all included studies in this review. Kermany et al. [74] 
demonstrated the general applicability of its Inception V3 system to screen 
for pediatric pneumonia using chest X-Rays to help externally validate its 
reported results of 97.8% sensitivity and 97.4% specificity. Furthermore, 
this demonstrates the versatility of the Inception V3 system. There are 
additional strengths amongst the included studies that are noteworthy. De 
Fauw et al. [73] used less prohibitive training data requirements, which 
allowed researchers to develop their U-Net AI screening systems using 
retinal images from across multiple real-world settings. Hansen et al. [79] 
and Sayres et al. [71] assessed their respective AI screening systems across 
different stages and severity levels of diabetic retinopathy, which was 
unique to these two studies. Providing stage and severity breakdown is an 
important feature for AI systems that is being assessed for future clinical 
implementation, as diabetic retinopathy is a progressive rather than a binary 
disease. Kanagasingam et al. [80] assesses its Inception V3 AI screening 
system against an established gold standard grading protocol that the study 
developed in collaboration with ophthalmologists who specialize in retinal 
diseases. The alignment of AI screening results with a grading protocol from 
a reliable source supports the demonstrated performance of the system of 
interest. Son et al. [87] developed its CNN to recognize diverse lesions, 
which increases the potential of screening systems to differentiate between 
stages and severity levels of progressing diabetic retinopathy. Lim et al. [17] 
collected ungradable EyeArt AI results, dilated the unreadable images, and 
repeated screening assessments. Doing so improves the gradeability rate of 
EyeArt and allows for the greater use of available retinal images. Lastly, Tufail 
et al. [90] reported the incremental cost-effectiveness ratio (ICER) for its 
EyeArt AI screening system, which is particularly useful for informing public 
health interventions that plan to implement of accurate, top-performing, and 
economical AI systems for large-scale DR screening programs (Table 6).
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Refer-
ence

Main Objective Limitations regarding exter-
nal validity

Limitations in symptomatic 
indicators / imaging methods and 
reporting / further issues

Strengths

Abramoff 
2018 (1)

Trial of an AI system 
to detect diabetic reti-
nopathy in people with 
diabetes

Urban, suburban, and rural 
classifications are not speci-
fied for the 10 primary care 
practices included in the 
study; community type could 
have a potential impact on the 
frequency of certain lesions 
and/or stages of DR in the 
study population, therefore 
the study’s external validity is 
limited to its areas of interest

The number of retinal images 
gathered from the 10 primary care 
practices across the US is not speci-
fied; this creates uncertainty in the 
validity of sensitivity and specificity 
values reported by the study as 
the number of retinal images used 
to train the AI algorithm directly 
effects how well it can recognize 
lesions during the external valida-
tion phase

The study includes 10 primary 
care practices from across the US 
rather than within a single region

Bellemo 
2019 (2)

To evaluate the ac-
curacy of an AI model 
using deep learning in 
a population-based dia-
betic retinopathy screen-
ing program in Zambia, 
a lower-middle-income 
country.

Urban, suburban, and rural 
classifications are not speci-
fied for the 5 mobile screening 
clinics included in the study; 
community type could have 
a potential impact on the 
frequency of certain lesions 
and/or stages of DR in the 
study population, therefore 
the study’s external validity is 
limited to its areas of interest

The number of retinal images gath-
ered from the 5 mobile screening 
clinics across Zambia is not speci-
fied; this creates uncertainty in the 
validity of sensitivity and specificity 
values reported by the study as 
the number of retinal images used 
to train the AI algorithm directly 
effects how well it can recognize 
lesions during the external valida-
tion phase

The study includes 5 mobile 
screening units from across 
Zambia rather than within a single 
region

De Fauw 
2018 (3)

To apply a novel deep 
learning architecture to 
a clinically heteroge-
neous set of three-di-
mensional optical coher-
ence tomography scans 
from patients referred to 
a major eye hospital

N/A: population-based cohorts 
were used to externally vali-
date the study’s DLA

The number of retinal images in 
the external validation data set 
used to assess the deep learning 
architecture is not provided; this 
creates uncertainty in the validity 
of sensitivity and specificity values 
reported by the study as the number 
of retinal images used to train the 
AI algorithm directly effects how 
well it can recognize lesions during 
the external validation phase

The study removes previous bar-
riers to wider clinical use without 
prohibitive training data require-
ments for pathologies across 
multiple real-world settings

Gargeya 
2017 (4)

To develop robust 
diagnostic technology to 
automate DR screening

N/A: 405 E-ophtha and 1,748 
Messidor-2 retinal fundus 
images collectively serve as a 
sufficiently large data set for 
external validation

N/A: E-ophtha and Messidor-2 are 
trusted databases of color retinal 
fundus images designed for labora-
tory and clinical research

A large data set of 75,137 publicly 
available retinal fundus images 
from diabetic patients were used 
to train and test an AI model to 
differentiate healthy fundi from 
those with DR

Gulshan 
2016 (5)

To apply deep learning 
to create an algorithm 
for automated detection 
of diabetic retinopathy 
and diabetic macular 
edema in retinal fundus 
photographs

N/A: EyePACS-1 and Mes-
sidor-2 are trusted databases 
of color retinal fundus images 
designed for laboratory and 
clinical research

N/A: 9,963 EyePACS-1 and 1,748 
Messidor-2 retinal fundus images 
collectively serve as a sufficiently 
large data set for external validation

A large data set of 128,175 retinal 
fundus images from diabetic 
patients were used to train and 
test an AI model to differentiate 
healthy fundi from those with 
DR; each image was graded 3 to 
7 times for DR by 54 US licensed 
ophthalmologists and ophthal-
mology senior residents over an 
8-month period

Hansen 
2015 (6)

To compare the Iowa 
Detection Program 
(IDP) ability to detect 
diabetic eye diseases 
to human grading car-
ried out at Moorfields 
Reading Center on the 
population of Nakuru 
Study from Kenya

All 3,460 subjects whose 
retinal images were used are 
long-term residents of Nakuru, 
which limits the generaliz-
ability of sensitivity and speci-
ficity results to the study’s 
geographic area of interest

The number of retinal images gath-
ered from the Nakuru Eye Study 
from Kenya is not specified; this 
creates uncertainty in the validity 
of sensitivity and specificity values 
reported by the study as the number 
of retinal images used to train the 
AI algorithm directly effects how 
well it can recognize lesions during 
the external validation phase

Grading conducted by retinal 
specialists and the Iowa Detection 
Program (the study’s AI system) 
broke down screening results by 
severity of DR: no-apparent reti-
nopathy, mild, moderate, severe, 
and proliferative; doing so allows 
sensitivity and specificity values to 
be assessed for different stages of 
DR, which leads to a more holistic 
evaluation of the AI system

Table 6. — Quality of included studies
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Kanagas-
ingam 
2018 (7)

To describe the perfor-
mance of an AI system 
for diabetic retinopathy 
deployed in a primary care 
practice

This study enrolled diabetes 
patients from a single primary 
care practice in Western Aus-
tralia; providing results from a 
single location with a limited 
number of participants (193) 
limits the external validity 
of the results to the area of 
interest

N/A: DiaRetDB1, Kaggle 
(EyePACS), and the study’s own 
Australian Tele-eye care DR 
databases of color retinal fundus 
images are designed for labora-
tory and clinical research

Proper symptomatic indicators, 
imaging methods, and reporting 
techniques were considered and 
used in this study

The binary reading (disease or no 
disease) by ophthalmologists was 
used as the gold standard and com-
pared with the grading obtained 
from the AI system, which contrib-
utes to the validity of sensitivity 
and specificity findings reported by 
this study

Keel 2018 
(8)

To evaluate the feasibility 
and patient acceptability 
of a novel AI-based DR 
screening model within 
endocrinology outpatient 
settings

This study enrolled diabetes 
patients from two urban en-
docrinology departments in in 
Melbourne, Australia; because 
differing environments, com-
munity types, and locations 
of residence can potentially 
contribute to the frequency of 
particular lesions or stages of 
DR, providing results from 
only two locations with a 
limited number of participants 
(196) limits the external valid-
ity of the results

N/A: proper symptomatic 
indicators, imaging methods 
(retinal fundus), and reporting 
techniques were considered and 
used in this study

The deep learning algorithm was 
developed using a large number 
of retinal photographs (66,790) 
acquired from an online database 
(http://www.labelme.org, Guang-
zhou, China) designed for labora-
tory and clinical research

Kermany 
2018 (9)

To establish a diagnostic 
tool based on a deep-
learning framework for the 
screening of patients with 
common treatable blinding 
retinal diseases

The model was tested with 
1,000 retinal images belong-
ing to 633 patients from an 
unspecified location; uncer-
tainty with regards to the en-
vironments, community types, 
and locations of residence of 
the study participants limits 
the study’s ability to general-
ize its findings to retinal 
images belonging to patients 
outside of the study

N/A: proper symptomatic 
indicators, imaging methods 
(OCT), and reporting techniques 
were considered and used in 
this study

Study provides a more transparent 
and interpretable diagnosis of DR 
by highlighting the regions recog-
nized by the neural network

Study further demonstrates the 
general applicability of its AI 
system to screen for pediatric pneu-
monia using chest X-ray images

Li 2018 
(10)

To describe the develop-
ment and validation of an 
AI-based, deep learning 
algorithm (DLA) for the 
detection of referable DR

N/A: population-based cohorts 
were used to externally vali-
date the study’s DLA

N/A: proper symptomatic 
indicators, imaging methods 
(retinal fundus), and reporting 
techniques were considered and 
used in this study

For external validation, the study 
tested its DLA using 35,201 images 
of 14,520 eyes from population-
based cohorts of Malays, Cauca-
sian Australians, and Indigenous 
Australians

Li 2019 
(11)

To explore the use of deep 
transfer learning method 
based on the visual geom-
etry group 16 (VGG-16) 
network for classifying 
age-related macular degen-
eration (AMD) diabetic 
macular edema (DME) in 
OCT images accurately 
and automatically

N/A: A large set of images 
derived from population-based 
cohorts were used in each of 
the study locations (the Shiley 
Eye Institute of the University 
of California, San Diego, the 
California Retinal Research 
Foundation, Medical Center 
Ophthalmology Associates, 
the Shanghai First People’s 
Hospital, and the Beijing 
Tongren Eye Center

N/A: diverse symptomatic 
indictors including neovascular-
ization, diabetic macular edema, 
and drusen were considered; 
proper imaging methods (OCT), 
and reporting techniques were 
applied in this study

For external validation, the study 
tested its DLA using 207,130 
retina OCT images between 2013 
and 2017 from retrospective 
cohorts of 5,319 adult patients 
from healthcare institutions in the 
United States and China; the use 
of these population-based cohorts 
strengthens the external validity of 
sensitivity and specificity findings 
for patients residing in California, 
Shanghai, and Beijing

Lim 2019 
(12)

Evaluate AI system to 
screen people with diabe-
tes at point-of-care for DR 
including DME 

Urban, suburban, and rural 
classifications are not apparent 
or considered in this multi-
center study; community type 
could have a potential impact 
on the frequency of certain 
lesions and/or stages of DR in 
the study population, therefore 
the study’s external validity is 
limited to its areas of interest

N/A: EyePACS-1 is a trusted 
database of color retinal fundus 
images designed for laboratory 
and clinical research; proper im-
aging methods (retinal fundus), 
and reporting techniques were 
applied in this study

Dilated images were used for sub-
jects with ungradable EyeArt AI 
results on undilated images, which 
improves the gradeability rate of 
the EyeArt AI system and allows 
for the greater use of available 
retinal images
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Rajalak-
shmi 2018 
(13)

To assess the role of AI-based 
automated software for detec-
tion of DR and sight-threating 
DR by retinal fundus 
photography taken using a 
smartphone-based device and 
validate it against ophthal-
mologist’s grading

This study enrolled diabetes 
patients from a single tertiary 
care diabetes center in India; 
providing results from a single 
location limits the external 
validity of the results to the 
area of interest

N/A: proper symptomatic 
indicators, imaging methods 
(retinal fundus), and reporting 
techniques were considered and 
used in this study

This is the first time that an auto-
mated AI DR screening software 
has been successfully tested for 
its accuracy for smartphone-based 
retinal imaging

Raju 2017 
(14)

To use deep learning applica-
tions to classify the stages of 
DR and detect the laterality of 
the eye using retinal fundu-
scopic images

N/A: population-based cohorts 
were used to externally vali-
date the study’s DLA

N/A: Kaggle is a trusted 
database of color retinal fundus 
images designed for laboratory 
and clinical research; proper im-
aging methods (retinal fundus), 
and reporting techniques were 
applied in this study

A large data set of ~53,000 retinal 
fundus images from diabetic 
patients was used as the validation 
dataset along with 8,810 images 
for the training data set, which 
increases the power of the AI 
screening test

Raumvi-
boo 2019 
(15)

To validate a deep learning al-
gorithm on a large-scale clini-
cal population, and compare 
the algorithm performance 
with that of human graders

N/A: population-based cohorts 
were used to externally vali-
date the study’s DLA

N/A: proper symptomatic 
indicators, imaging methods 
(retinal fundus), and reporting 
techniques were considered and 
used in this study

A total of 25,326 gradable retinal 
images of patients with diabetes 
from the community-based, na-
tionwide screening program of DR 
in Thailand were analyzed for DR 
severity and referable DME

Sayres 
2019 (16)

To understand the impact of 
deep learning DR algorithms 
on physician readers in 
computer-assisted settings

The study utilized 1,796 reti-
nal fundus images from 1,612 
unique patients, however, the 
source, geographic distribu-
tion, and other relevant infor-
mation regarding the diversity 
of the participant population 
is not specified; this creates 
uncertainty and limits the 
external validity of the study’s 
results

N/A: EyePACS-2 is a trusted 
database of color retinal fundus 
images designed for laboratory 
and clinical research; proper im-
aging methods (retinal fundus), 
and reporting techniques were 
applied in this study

This study assessed the sensitivity 
and specificity of its deep learning 
DR algorithm  across a 5-point 
scale on DR severity: no apparent 
retinopathy, mild nonproliferative 
DR, moderate nonproliferative DR, 
severe nonproliferative DR, and 
proliferative DR; such informa-
tion is valuable when determining 
treatment plans for patients with 
diverse stages of DR

Son 2020 
(17)

To develop and evaluate deep 
learning models that screen 
multiple abnormal findings in 
retinal fundus images

N/A: population-based cohorts 
were used to externally vali-
date the study’s DLA; macula-
centered retinal fundus im-
ages from the Seoul National 
University Bundang Hospital 
Retina Image Archive were 
obtained at the health screen-
ing center and ophthalmology 
outpatient clinic at Seoul 
national University Bundang 
Hospital

N/A: the Indian Diabetic Reti-
nopathy Image Dataset (IDRID) 
and E-Ophtha dataset are trusted 
databases of color retinal fundus 
images designed for laboratory 
and clinical research; proper im-
aging methods (retinal fundus), 
and reporting techniques were 
applied in this study

12 major findings were assessed 
(hemorrhage, hard exudate, cotton-
wool patch, drusen, membrane, 
macular hole, myelinated nerve 
fiber, chorioretinal atrophy or scar, 
any vascular abnormality, retinal 
nerve fiber layer defect glauco-
matous disc change, and nonglau-
comatous disc change) with their 
region information using DLA; this 
method of assessment demonstrate 
the versatility of the DLA

Ting 2017 
(18)

To evaluate the performance 
of a deep learning system 
(DLS) in detecting referable 
DR, vision-threatening DR, 
possible glaucoma, and age-
related macular degeneration 
(AMD) in community and 
clinic-based multiethnic 
populations with diabetes

N/A: Validation of the DLS 
was completed using a 
primary validation data set in 
the Singapore National Dia-
betic Retinopathy Screening 
Program and 10 multiethnic 
cohorts with diabetes; using 
national and ethnically diverse 
datasets strengthens the 
external validity of the study’s 
results for the population of 
Singapore

N/A: The Singapore National 
Diabetic Retinopathy Screening 
Program; is a trusted database 
of color retinal fundus images 
designed for laboratory and 
clinical research; proper imag-
ing methods (retinal fundus), 
and reporting techniques were 
applied in this study

A large data set of 494,661 retinal 
fundus images from diabetic 
patients was used as the validation 
dataset along with 112,648 images 
for the training data set, which 
increases the power of the AI 
screening test

Torre 
2019 (19)

To present a DR deep learn-
ing interpretable classifier, 
determine its performance in 
classifying retinal images into 
different levels of severity 
and explain the classification 
results by assigning a score 
for each point in the hidden 
and input spaces

Source of external validation 
set is not provided; creates 
uncertainty as to the strength 
of the study’s external validity

N/A: EyePACS is a trusted 
database of color retinal fundus 
images designed for laboratory 
and clinical research; proper im-
aging methods (retinal fundus), 
and reporting techniques were 
applied in this study

A large data set of 75,650 retinal 
fundus images from diabetic 
patients was used as the validation 
dataset along with 10,000 images 
for the training data set, which 
increases the power of the AI 
screening test
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Tufail 
2016 (20) 

To determine whether au-
tomated DR image assess-
ment systems (ARIAS) can 
be safely introduced into 
DR screening pathways to 
replace human graders

Source of external validation 
set is not provided; creates 
uncertainty as to the strength 
of the study’s external validity

N/A: proper imaging methods 
(retinal fundus), and reporting 
techniques were applied in this 
study

The study provides incremental 
cost-effectiveness ratios (ICERs) 
for AI screening systems assessed; 
informs future public health efforts 
in implementing effective and 
economical AI systems for the 
large-scale screening of DR

Zeng 
2019 (21)

A computer-aided diagno-
sis method based on DLA 
is proposed to automatical-
ly diagnose the referable 
DR by classifying color 
retinal fundus photographs 
into two grades

Source of external validation 
set is not provided; creates 
uncertainty as to the strength 
of the study’s external validity 

N/A: proper imaging methods 
(retinal fundus), and reporting 
techniques were applied in this 
study

Different from previous studies 
assessing AI screening systems, 
the proposed system in this paper 
accepts binocular retinal fundus 
images as inputs and learns their 
correlation to help to make a 
prediction

DR: diabetic retinopathy, E-ophtha: a database of color fundus images designed for scientific research, Messidor-2: a collection of diabetic retinopathy 
examinations, each consisting of two macula-centered eye fundus images (one per eye), EyePACS-1: a database of retinal images used by clinicians to 
validate diabetic retinopathy screening systems, Kaggle: a large set of high-resolution retina images taken under a variety of imaging conditions, OCT: 
Optical Coherence Tomography, DLA: deep learning algorithm, DLS: deep learning system, N/A: not applicable.

Meta-Analysis

Sensitivity of AI screening systems reported by the eligible 
studies

Sensitivity is reported in this review as the percentage of screened participants 
with diabetic retinopathy who are correctly identified as positive by the AI 
screening system of interest. Amongst the 21 eligible studies included in this 
review, 19 reported sensitivity estimates for their respective AI architectures 
that were applied to retinal images from diverse populations (see Figure 6 on 
the next page; [71,72,74,75,77,78, 80-91]). The median sensitivity amongst 
the studies is 92.5% true-positive rate, with a total range of 80.3% to 100%. 
The quartile 1 (Q1) to quartile 3 (Q3) quartile range is 91.4% to 96.1% (see 
Figure 5, below). The mean of the reported results is 92.4% sensitivity. 
Sensitivity estimates depended largely on the quantity of retinal images 

used to train, develop, and externally validate AI screening systems, which 
was determined by the studies’ respective authors. In addition to specificity 
variation being influenced by image quantity, the imaging modality (fundus 
photography or OCT), geographic area of recruited participants, and the 
number of participants may have affected the results. Furthermore, Table 7 
compares sensitivity values to the sample size of training datasets applied 
to AI screening systems. It is noteworthy that the subgroup with the larger 
sample size of ≥75,000 retinal images showed higher sensitivity (94.0%; 
95% CI: 91.3% to 96.7%) than the smaller sample size of <75,000 images 
(90.5%; 95% CI: 87.1% to 93.9%). 

Figure 5. — Box-plot of overall sensitivity reported by eligible studies
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Figure 6. — Sensitivity (%) of AI screening systems and external validation data set (if specified) reported by the included studies 

Table 7. — Subgroup analysis of training set sample size and sensitivity of automatic detection of diabetic retinopathy using AI screening systems 

Sample size of training set Number of eligible studies Sensitivity, % (95 CI)

<75,000 6 90.5 (87.1 to 93.9)

≥75,000 8 94.0 (91.3 to 96.7)

Sensitivity of AI Screening Systems according to Type of 
Architecture Implemented

Different AI architectures may produce different sensitivity results due to 
many potential reasons including varying algorithms, reference standards, 
diversity of recognizable retinal lesions, various stages and severities of 
diabetic retinopathy presented to the architectures, type of imaging modality, 
quality and quantity of retinal images, geographic area in which assessments 
are conducted, demographic breakdown of participants, and different 
training, development, and external validation datasets. Figure 7 presents the 

mean sensitivity of each AI system that was assessed by the included studies. 
From lowest to highest sensitivity, the order of the reported results is as 
follows: 87.2% (AlexNet), 89.3% (unspecified CNNs), 91.0% (IDP), 94.1% 
(VGG), 94.8% (EyeArt), 96.0% (Inception V3), 96.9% (Inception V4). The 
pooled sensitivity amongst all studies is 92.8%. Due to the aforementioned 
differences between studies, precise comparisons of sensitivity are limited. 

Figure 7. — Mean Sensitivity (%) of Each AI Screening System Reported by the Included Studies
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Specificity of AI Screening Systems Reported by the Eligible 
Studies

Specificity is reported in this review as the percentage of screened participants 
without diabetic retinopathy who are correctly identified as negative by the AI 
screening system of interest. Amongst the 21 eligible studies included in this 
review, 18 reported specificity estimates for their respective AI architectures 
applied to retinal images from diverse populations (see Figure 9 on the 
next page; [71,72,74,75,77,78, 80-91]). The median specificity amongst the 
studies is 92.2% false-positive rate, with a total range of 69.9% to 98.8%. The 
Q1 to Q3 quartile range is 90.6% to 95.2% (see Figure 8, below). The mean 
of the reported results is 90.3% specificity. Specificity estimates depended 
largely on the quantity of retinal images used to train, develop, and externally 

validate AI screening systems, which was determined by the studies respective 
authors. In addition to specificity variation being influenced by image quantity, 
the imaging modality (fundus photography or OCT), geographic area of 
recruited participants, and the number of participants may have affected the 
results. Furthermore, Table 8 demonstrates compares specificity values to 
the sample size of training data sets applied to AI screening systems. It is 
noteworthy that the subgroup with the larger sample size of ≥75,000 retinal 
images showed higher specificity (93.7%; 95% CI: 90.6% to 96.8%) than the 
smaller sample size of <75,000 images (90.0%; 95% CI: 85.4% to 94.6%).

Figure 8. — Box-plot of overall specificity reported by eligible studies

100-specificity (false-positive rate [%])

Figure 9. — Specificity (%) of AI Screening Systems Reported by the Included Studies
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Sample size of training set Number of eligible studies Specificity, % (95 CI)

<75,000 6 90.0 (85.4 to 94.6)

≥75,000 8 93.7 (90.6 to 96.8)

Table 8. — Subgroup analysis of training set sample size and specificity of automatic detection of diabetic retinopathy using AI screening systems 

Specificity of AI Screening Systems Reported by the Eligible 
Studies

Different AI architectures may produce different specificity results due to 
many potential reasons including varying algorithms, reference standards, 
diversity of recognizable retinal lesions, various stages and severities of 
diabetic retinopathy presented to the architectures, type of imaging modality, 
quality and quantity of retinal images, geographic area in which assessments 
are conducted, demographic breakdown of participants, and different 
training, development, and external validation datasets. Figure 10 presents

the mean specificity of each AI system that was assessed by the included 
studies. From lowest to highest specificity, the order of the reported results 
is as follows: 69.9% (IDP), 80.2% (EyeArt), 90.1% (unspecified CNNs), 
90.7% (AlexNet), 93.0% (VGG), 94.8% (Inception V3), and 95.3% 
(Inception V4). The pooled specificity amongst all studies is 87.7%. Due 
to the aforementioned differences between studies, precise comparisons of 
specificity are limited. 

Figure 10. — Mean Specificity (%) of Each AI Screening System Reported by the Included Studies

Forest Plot Analyses of Sensitivity and Specificity

Forest plot analyses were conducted to demonstrate reported sensitivity and 
specificity values from individual studies. Figures 11 and 12 display notable 

heterogeneity between studies assessing the performance of diverse AI 
systems in screening for diabetic retinopathy. 

Figure 11. — Forest Plot for Reported Sensitivity Values

The squares and horizontal lines correspond to the study-specific sensitivity and 95% confidence intervals (CIs), respectively. The diamond represents 
the pooled sensitivity and 95% CI. The overall pooled sensitivity is 92.8% (95% CI: 91.9%-93.7%).
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Figure 12. — Forest Plot for Reported Specificity Values

The squares and horizontal lines correspond to the study-specific specificity and 95% confidence intervals (CIs), respectively. The diamond 
represents the pooled specificity and 95% CI. The overall pooled specificity is 87.7% (95% CI: 86.4% to 89.0%).

Figure 13. — Summary receiver operating characteristics (SROC) curves of eligible studies

TP: true positive, FN: false negative. The x-axis and y-axis demonstrate the false positive fraction (= FP/FP + TN) and 
true positive fraction (=TP/(TP+FN).

Summary Receiver Operating Characteristic (SROC) Curve 
Analysis

Figure 13 displays an SROC curve of the included studies. The dashed line 
indicates the 95% prediction region. This SROC curve shows the relationship 
between reported sensitivity and specificity values for each study. High 
sensitivity corresponds to a high negative predictive value and is the ideal 

factor of a “rule-out” test for diabetic retinopathy, while a high specificity 
corresponds to a high positive predictive value and is the ideal factor for a 
rule-in test. 
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Discussion

To date, this is the largest systematic review and meta-analysis to assess 
the utility of neural networks for diabetic retinopathy screening. This study 
shows that the neural architecture method can correctly detect 92.8% (95% 
CI: 91.9% to 93.7%) of diabetes mellitus patients with referable diabetic 
retinopathy and exclude 87.7% (95% CI: 86.4% to 89.0%) of those without 
referable diabetic retinopathy. These results are superior to pooled sensitivity 
and specificity results reported in previous meta-analyses on AI screening 
system performance and surpasses the 80% acceptability threshold needed 
for AI screening systems to be applied in clinical settings. The sensitivity 
and specificity of six CNN models were compared in subgroup analyses. No 
significant differences in sensitivity were found among the included studies 
and all reported values were clinically acceptable. The mean specificity of 
IDP (71%) was reported to be of lower specificity than the 80% acceptance 
threshold, while all other AI screening systems demonstrated mean values of 
80% or greater. The majority of studies recruiting diabetes mellitus patients 
from diverse backgrounds were conducted to assess the performance of their 
respective AI screening systems for clinical use, but there is a lack of studies 
that summarized those results quantitatively. This review provides quantitative 
evidence of the accuracy of such systems. Additionally, the results of this 
study showed that CNNs have great potential in clinical application as high 
screening accuracy was demonstrated amongst diverse neural architectures. 
Since it is quite expensive and time-consuming to develop and train algorithms 
with a large quantity of high-resolution and labeled retinal images, it would 
be cost-effective for future investigations to ascertain a gold standard for size 
of development and training sets and image resolution. The findings from 
these investigations could be particularly useful for using neural networks to 
detect rare diseases, of which there are only a limited number of cases. It is 
noteworthy that this meta-analysis did demonstrate that the subgroups with 
larger sample sizes showed higher performances in terms of sensitivity and 
specificity. However, further research is still crucial before concluding that 
the sample size of the training dataset influences sensitivity and specificity 
results. The screening accuracy of CNNs may not be affected by the criteria 
in experts’ standards for screening diabetic retinopathy, which is reasonable 
because ICDRS was developed using ETDRS. However, because ICDRS is 
easier and more commonly used in clinical settings, it may be preferable to 
consider ICDRS criteria when developing, testing, and validating automated 
screening systems, though ETDRS is still treated as the gold standard.

With regard to imaging modalities, the majority of studies that have and 
currently investigate AI screening performance use fundus photography as 
the modality of choice and a smaller number utilize OCT imaging. Fundus 
photography produces a two-dimensional image of the three-dimensional 
structure of the retina, while OCT captures the cross-sectional axial of 
the retina through light coherence. The main shortcoming of using fundus 
photography for screening is that it only produces two-dimensional images, 
while the structure of the retina is three-dimensional. For this reason, 
it is advantageous to use OCT for diabetic retinopathy visualization as 
OCT can produce clear three-dimensional images of thick samples by 
rejecting background signals while collecting light directly reflected from 
retinal surfaces. Thus, researchers should focus on training algorithms 
to interpret OCT images in order to better screen for diabetic retinopathy. 
Alternatively, training neural networks to recognize and analyze both 
OCT and fundus images might lead to higher screening performance. 

A comprehensive literature search was conducted in global health and 
biomedical databases. High quality studies that met a specific set of eligibility 
criteria were included in this study. Performance metrics of sensitivity 
and specificity were meta-analyzed to assess the performance of diverse 
AI screening systems. The heterogeneity of results was also graphically 
demonstrated through forest plot and SROC curve analyses.

Limitations for Review

This review possesses several limitations that must be considered. First, in 
the subgroup analyses assessing the sensitivity and specificity of AI screening 
systems, only one study contributed results to the AlexNet, IDP, and Inception 
V4 subgroups. Reporting performance levels based on a limited number of 
studies weakens the credibility of this study’s meta-analytic findings. Second, 
several studies used the same datasets for training and validation of their 
respective AI screening systems. Assessing the impact of using overlapping 
data sources on the outcome of the results is challenging to evaluate because 
the contents of each dataset was not discussed in the included studies. Third, 
CNNs lack standardized cut-off points or thresholds with which to designate 
the severity of diabetic retinopathy. Due to such an absence, this review 
could not make strong comparisons between their abilities to screen for 
disease severity. Fourth, there was a strong risk of selection bias amongst the 
included studies with regard to participant recruitment. It is unclear whether 
participant data was included in multiple datasets, so the overall performance 
metrics may be underestimated or overestimated due to potential changes 
in said participants’ severities of diabetic retinopathy between data sources.

Conclusions

This review and meta-analysis demonstrates clinically acceptable 
performances from the majority AI systems used in diabetic retinopathy 
screening. Although the majority of neural networks showed clinically 
acceptable performance levels, further improvement depends on the 
continual development of novel algorithms with large and gradable sets of 
images for training and validation. With the rapidly growing global burden of 
diabetic retinopathy, AI screening systems can increase the ability for disease 
prevention by allowing for early detection. If cost-effectiveness ratios can be 
optimized, AI can become a financially sustainable and clinically effective 
intervention that can be incorporated into the healthcare systems of LMICs 
and geographically remote locations. AI screening can increase the efficiency 
of eye care and diabetes services and optimize the care of patients within 
healthcare systems that provide large-scale services on a population level. 
Combining screening technologies with treatment interventions such as anti-
VEGF therapy, acellular capillary laser treatment, and vitreoretinal surgery 
can lead to substantial reductions in the incidence of irreversible vision-loss 
due to proliferative diabetic retinopathy. With further advancement, AI will 
inform and improve primary, secondary, and tertiary care settings’ approaches 
to diabetic retinopathy management.
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