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With regards to gene expression data, several internal and external 
validity measures have been recommended to approximate the number 
of their clusters. Nonetheless, in most cases, the experts fail to take into 
account the analysis related to how a clustering algorithm can produce 
stability of the groupings [1]. The article recommends a new selection 
process and standard of cluster validation to establish the appropriate 
number of clusters. The method evaluates the predictive stability or power 
of partitioning [2]. Furthermore, the validity measure is developed by 
estimating the consensus matrix’s “clearness” which can be considered as 
the outcome or product of resampling a consensus clustering or resampling 
clustering scheme [3]. Additionally, the analysis of the distance between 
the validity plots for permutated and initial data sets helps in selecting the 
number of clusters [4]. The researchers employed the selection process to 
approximate the clustering results on numerous datasets as shown below [5].

Therefore, the recommended procedure creates a comprehensive and 
correct estimation of the number of clusters which are consistent with the 
gold standards and biological knowledge of cluster quality. At present, it is 
highly expected to concurrently assess the expression level of genes using the 
microarray chip technology. It has greatly contributed towards advancement 
of new techniques of computational intelligence as well as new concerns in 
bioinformatics research [6-7]. Structuring massive amount of data so that 
it would be possible to develop or extract knowledge from them has been 
problematic [8]. Clustering has proved to be most popular exploring method 
that assists in establishing the important trends of co-expressed genes as well 
as facilitates significant grouping of the gene expression [9]. Furthermore, by 
detecting a set of gene clusters, scientists can now understand the function 
of a cell by exploring the mechanisms of gene interaction and regulation as 
well as defining the roles of certain genes which were formerly unrecognized 
[10]. Alternatively, analysis of diverse tumor samples to determine their 
gene expression profiles has led to improvements in medical treatment and

detection of new unidentified tumor subtypes [11]. Furthermore, microarray 
data is being explored using several all-purpose and specialty clustering 
algorithms. The algorithms used for clustering gene expression data 
have different pros and cons [12]. The diverse clustering algorithms can 
lead to inconsistent clustering owing to the certain type of grouping of 
the data items and inner bases [13]. The major issue is the evaluation of 
cluster assignments for each sample, the chosen number of clusters, and 
the confidence of the clustering outcome. The researchers recommended 
a validity measure to facilitate estimation data clustering stability which 
ensures the confidence of the clustering result is increased [14]. The validity 
measure adopts the computations of the consensus matrix entropy as well as 
relies on past scholarly projects on resample-based consensus clustering is 
used to develop the validity measure. The article recommends the selection 
process to establish a suitable number of clusters largely on the basis of the 
entropy calculations. Furthermore, it is evident that clustering algorithms 
and new methods to the validation of the clustering outcomes as a substitute 
for the independent and manual verification are constantly developed [15]. 
There are two main categories of the techniques being employed for the 
validation of the clustering outcomes. They include the external and internal 
validation measures [16].

According to Natalia Novoselova and Igor Tom, the external measures use 
the gold standard for clustering or recognized set of class labels are used to 
assess the clustering results [17]. They evaluate the consensus between the 
gold standard and a partitioning on the basis of the contingency table of data 
items’ pairwise assignments for instance, the FM score, Jaccard coefficient, 
entropy measure, and the adjusted Rand Index [18].

Alternatively, the internal measures are usually approximate the clustering 
results’ correspondence to the internal data structure and they are mostly 
based on data alone. Majority of the internal measures attempt to achieve
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maximization of the cluster separability, for instance, the Silhouette Width 
and Dunn-like Indices as well as to reduce the cluster compactness [19, 
20]. The authors recommend to introduce a new measure of clustering 
validity through the estimation of consensus matrix entropy. Additionally, a 
comparison between the gold standard and the validity measure founded on 
empirical cumulative distribution (CDF) is also made [21, 22]. Furthermore, 
the authors try to establish the number of clusters by recommending a 
selection process which links to the best stable clustering outcome [23-25]. 
The researchers recommend a validity measure which approximates the 
stability of the clustering outcome by computing the entropy’s consensus 
matrix.
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