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Introduction 

The invention of Smart Healthcare Systems, as well as major advances in 
medicine and public healthcare, have increased the Quality of Life (QoL) 
in developing countries. As a result, there is an increasing need for low-cost 
remote health monitoring that is simple to use for the elderly and patients with 
non-communicable diseases. Recent technology allows for the recording of 
parameters through sensory devices and communication with others. It’s 
difficult to keep track of all of the medical parameters and post-operative 
data of people with chronic diseases like diabetes and heart disease on a 
continuous basis. The system was created for in-home patients, particularly 
when going out for routine check-ups with healthcare professionals is 
difficult due to limitations during pandemic such as COVID 19 or when 
the individual is alone. This paper proposed an AI-based groundbreaking 
health tracking system that uses the Internet of Things to access the patient’s 
medical parameters in both local and remote locations. When a person’s 
wellbeing becomes urgent, this initiative seeks to send an emergency alert

to family members or loved ones. A cloud server records data from the 
patient’s temperature sensor and pulse sensor; the data is analyzed using 
support vector machine algorithms to identify irregular conditions, and an 
emergency message is sent to the rest of the family via a mobile application, 
as well as a warning message to the nearest hospital.

The entire remote health-care monitoring system consists of sensors, 
actuators, advanced communication technology, AI & ML algorithm-based 
prediction system, and allows the patient to remain in the comfort of his or her 
own home. These devices can constantly monitor a person’s physiological 
signs in real time, assess any health problems, and anticipate any potential 
anomalies in order to provide feedback to doctors. A microcontroller is used 
in a Health-Care Monitoring System (HMS) to track and process health data 
and send an SMS to a doctor’s phone or any family member who can take 
emergency steps (Figure 1).
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Figure 1. Block diagram of Health-care Monitoring System (HMS).

The key benefit of the above mentioned device is that it can constantly 
track any health issues in real time. HMSs are widely used in hospital 
environments, home care, and to monitor the vitals of athletes (heart rate, 
blood pressure, and body temperature). All of this crucial information is 
handled by numerous sensors built into the systems. Microcontrollers and 
wearable sensors, as well as Field-programmable Gate Arrays, are commonly 
used in the health monitoring systems shown above (FPGA). An attached 
transmitter receives physical heartbeat signals, processes the information, 
and sends it via Wi-Fi/3G/4G/5G. The receiver then passes this critical data

Cardiovascular diseases, cancer, chronic respiratory diseases, and diabetes 
are the leading causes of death around the world. Every year, more than 
36 million people (63 percent of total global deaths) die as a result of the 
aforementioned causes, including 14 million people who die very young, 
before the age of 70. More than 90% of NCD-related deaths occur in low and 
middle-income countries, and could have been avoided to a greater degree. 
Around 5.9 million people died in India as a result of NCDs, with 23% of 
those being premature deaths that could have been avoided [1].

Diabetes affects approximately 463 million adults (20-79 years) worldwide, 
with this figure expected to grow to 700 million by 2045. Diabetes affects 79 
percent of the population in low and middle-income countries. Diabetes has 
resulted in the deaths of 4.2 million people. Diabetes affects approximately 
69.2 million people in India, with the number projected to increase to 123.5 
million by 2040 [2]. Diabetes chronicity is linked to long-term damage and 
dysfunction of multiple organ systems, including the eyes, nerves, kidneys, 
and heart [3].

to the machine in the next step. A microcontroller in the transmitter senses the 
patient’s pulse, converts it to a voltage signal, and shows it. The same concept 
is used in HMS, where wearable sensors detect body temperature, blood 
pressure, and pulse rate without the use of wires. Protocols like Bluetooth are 
used for wireless data communication over short distances. The HMS makes 
use of analogue-to-digital converter technology. The FPGA is digitally linked 
to the entire device. As shown in figure 2, the electronic health management 
architecture is divided into three main layers.

Diabetes microvascular complications are long-term issues with small blood 
vessels. Retinopathy, nephropathy, and neuropathy are the most common. The 
coronary arteries, peripheral arteries, and cerebro-vasculature are all affected 
by macro-vascular complications of diabetes. Atherosclerotic plaque in the 
vasculature that supplies blood to the heart, cerebrum, limbs, and various 
organs is connected to early macro-vascular disease. Atherosclerotic plaque 
in these blood vessels can increase the risk of myocardial infarction (MI), 
stroke, claudication, and gangrene in late stages of macro-vascular disease. 
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality 
in diabetic patients [4]. This paper stresses the importance of introducing 
early detection, screening, and awareness measures to alleviate the stress of 
coping with complications [5]. Data mining techniques and tools were used in 
this study to resolve the problem of urgency in potential hospitalization needs 
for patients based on a collection of patient data patterns. The support vector 
machine model (SVM) has demonstrated expertise in identifying people with 
common diseases such as diabetes and pre-diabetes in the general population 
[6]. Artificial intelligence (AI) is readily assisting in clinical decision-making 

Figure 2.  E-health Monitoring Architechture.
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in the area of medicine. Most of the entirely attributable AI algorithms 
in this area are derived from related fields of statistics and probability 
theory; examples include neural networks, deep learning, classification and 
association rules, support vector machines, and text mining pipelines; others 
include Decision trees, nave Bayes, logistic regression, and random forests. 
The systems described above should be integrated into analytics pipelines 
that extract information from data in the form of understandable models and 
actionable decision-support recommendations. Data mining is a term used to 
describe the process of designing such pipelines [7,8]. Various data mining 
techniques are used to generate new predictive models based on existing risk 
prediction calculators and data from a single clinical site for accurate disease 
control and patient care [9].

Background

Because of the widespread availability of low-cost, secure wearable sensors, 
healthcare informatics is undergoing a revolution. Smart hospitals have taken 
advantage of the innovation of Internet of Things (IoT)-based sensors to build 
Remote Patients Monitoring (RPM) models that track patients at home. The 
RPM model is a real-world example of Ambient Assisted Living (AAL). 
The long-term tracking of patients using AAL framework systems produces 
vast volumes of data on a regular basis. As a consequence, to store, process, 
and analyze big health data, AALs can use cloud-based architectures. In the 
healthcare sector, the use of big data analytics for handling and analyzing 
large amounts of big medical data has begun to change the paradigm. 
Advanced software systems, such as Hadoop, have progressively promoted 
medical assistive applications because they allow for data collection in its 
native form, which can be stored in data warehouses as electronic medical 
records. Spark and its machine learning libraries, on the other hand, can 
analyze large amounts of medical data ten times faster than MapReduce. 
State-of-the-art cloud technologies are capable of processing large amounts 
of data, which bodes well for the development of smart healthcare networks 
capable of providing life-saving advanced medical services. Patients with 
Non-Communicable Diseases (NCDs) and the elderly who live alone will 
benefit from smart Remote Patient Monitoring (RPM) models that use cloud-
based technologies. The use of a cloud-based monitoring model to track the 
RPM of patients with chronic diseases (blood pressure problems) for 24 
hours with a reading every 15 minutes is useful in predicting the patients’ 
health status.

The RPM technology allows patients’ vital signs to be tracked outside of a 
typical clinical environment, such as at home, in a clinic, or in a hospital. 
Incorporating RPM into NCD and chronic-disease treatment increases a 
person’s quality of life by helping patients to preserve their independence, 
avoid complications, and reduce personal costs (Bayliss et al., 2003). RPM 
helps to accomplish these goals by using IoT and cutting-edge technologies 
to provide treatment. When patients are handling their complex self-care 
processes, such as home hemodialysis, this type of patient monitoring is 
most desired (Cafazzo et al., 2009). RPM’s core features, such as remote 
tracking and data pattern analysis of critical physiological parameters, allow 
for early identification of deterioration, minimizing emergency admissions, 
morbidity, and hospital stay length (Centre for Technology and Aging, 2010; 
O’Donoghue et al., 2012; Coye et al., 2009; Vavilis et al., 2012).

RPM’s numerous implementations have resulted in a plethora of RPM 
technology architecture variations. Most RPM technologies, on the other 
hand, are designed around a four-part architecture (Smith et al., 2010).

• Sensors connected to a device that can calculate physiological parameters 
and that too enabled with wireless communications.

• Local data management with patient’s site having interfaces between 
sensors and centralized data servers and/or healthcare providers.

• Data sent from sensors, local data storage, diagnostic applications, and/or 
healthcare providers is stored in a centralized repository.

• Software applications that diagnose and generates treatment suggestions 
and intervention alerts based on data analysis.

Depending on the disease and parameters controlled, various combinations 
of sensors, storage, and applications will be deployed [O’Donoghue et al., 
2012,10].

Sensors on peripheral instruments such as blood pressure cuffs, glucometers 
and pulse oximeter gather medical data such as blood pressure and other 
subjective patient data. Wireless telecommunication systems are used to 
send the obtained data to healthcare providers. The data is then analyzed by 
a healthcare practitioner or a clinical decision support algorithm for possible 
issues, and the patient, caregivers, and health professionals are automatically 
notified if a problem is discovered (Centre for Technology and Aging, 2010). 
As a result, prompt action guarantees successful treatment and patient 
management. Education, test and drug reminder reminders, and a means of 
contact between the patient and the provider are also included in the newer 
applications (Centre for Technology and Aging, 2010). RPM applications are 
used exclusively in the following disease conditions or ailments, but RPM is 
not limited to such conditions.

Diabetes

Multiple parameters, such as blood pressure, weight, and blood glucose, 
must be continuously monitored and controlled in order to manage diabetes. 
Real-time monitoring of critical parameters such as blood glucose and blood 
pressure readings, for example, provides urgent warnings to patients’ families 
and healthcare providers, allowing for timely intervention. There is proof that 
regular diabetes management with RPM is just as successful as a three-month 
clinic visit (Chase et al., 2003).

Congestive Heart Failure

RPM improves QoL, patient-provider relationships, shortens hospital stays, 
lowers mortality rates, and lowers healthcare costs, according to home 
monitoring for heart failure patients (Martinez et al., 2006).

Telemedicine in Correctional Facilities

The prison and correctional facility in Florida was a pioneer of RPM adoption, 
experimenting with telemedicine for the first time in the late 1980s (Illove, 
2016). Oscar W. Boultinghouse and Michael J. Davis are two of the doctors 
involved in this initiative, and from 1990 to 2007, Glenn G. Hammack led 
the University of Texas Medical Department in developing a groundbreaking 
telehealth programme in Texas state prisons (Freudenheim, 2010).
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Veterans Health Administration

The United States Veterans Health Administration (VHA) is the country’s 
largest integrated healthcare system, was one of the first to introduce, 
incorporate, and evaluate RPM technologies. RPM use should be expanded 
to include post-traumatic stress disorder, common chronic disorders, 
cancer treatment also including palliative care. As a result, VHA has 
recorded improvements in a number of metrics, including fewer visits to 
emergency rooms, hospitalizations and nursing home admissions [12]. The 
implementation of RPM has led to a reduction in operating costs, according 
to results from the VHA Care Coordination/Home Telehealth program 
(Darkins et al., 2008).

Trial of a Whole System Demonstrator in the United Kingdom

The Whole System Demonstrator (WSD) (WSD: A Telecare and Telehealth 
Summary) was launched by the UK Department of Health in May 2008. The 
world’s first randomized controlled study of telehealth and telecare, involving 
6191 patients and 238 GP practices across three regions, was conducted in 
Newham, Kent, and Cornwall. London City University, Oxford University, 
Manchester University, Nuffield Trust, London Imperial College, and the 
London School of Economics all looked into the studies listed above.

• Death rates have fallen by 45 percent.
• A 20% drop in the number of hospital admissions
• A 15% reduction in A&E visits
• A 14% decrease in elective admissions
• A 14% decrease in bed days
• Prices of tariffs are decreased by 8%.

In the United Kingdom, Paul Burstow, Minister of Government Care 
Services, announced that telehealth and telecare will be expanded to include 
three million people within the next five years (2012-2017). (3 Million Lives 
Announcement).

It is important to identify the signs and manage the illness as soon as possible. 
Data mining techniques are used in a variety of applications. It is an exercise 
in determining a large amount of pre-existing database in order to produce 
new content. In the health-care sector, data mining is important for predicting 
illness based on symptoms and classifying disease as diabetes or heart disease.

The development of a new digital tool for evaluating and disseminating 
effective health care information is the primary reason for data mining in the 
health-care system. Various attributes are fed into the system here. According 
to those attributes, the code compares the given symptoms to the actual 
dataset and predicts the associated disease based on user feedback.

The development of predictive models for the onset of chronic microvascular 
complications in T2DM patients could aid in the evaluation of the relationship 
between individual factors and the risk of developing a specific complication, 
as well as the stratification of the patient population at the medical center and 
the implementation of resources to support this risk.

Purpose

Instead of going to an assisted-living facility or nursing home frequently 
during Pandemic, this paper presents an expansion of opportunities by remote 
supervision for people affected by chronic diseases to stay in their homes. 
Wireless user preferences for monitoring purposes (Mainetti et al., 2011), 
through the development of Wireless Sensor Networks (WSNs), which make 
up a significant portion of IoT (Khalil et al., 2014). Thanks to their benefits 
and diversity, WSNs are widely used in healthcare applications. In an inquiry 
(Rotariu et al., 2012), C. Rotariu and V. Manta’s propose WSN for heart rate 
and oxygen saturation monitoring of patients. W. Y. Chung, S. C. Lee, and 
S. C. Lee, S. C. Electrocardiography (ECG) and blood pressure sensors were 
embedded into a mobile phone by H. Toh (Chung et al., 2008). An instance 
of a suitable solution to the IoT healthcare model is the wireless body area 
network. S. -L. Tan, J. García-Guzmán, F. Villa-Lopez transmits data about 
blood pressure, heart rate, body temperature and oxygen saturation to the base 
station using Wi-Fi technology [13]. J.Wannenburg as well as R. To track the 
health parameters of the patient, Malekianc uses Bluetooth technology and a 
smartphone to (Wannenburg et al., 2015).

The success of wearable technology and IoTs has now brought great 
opportunities to the healthcare domain, along with challenges. Through cloud 
storage and big data analytics, the whole system is activated, data collected 
from individual devices contributes to big health data and useful insights can 
be extracted from that. This data can be used by hospitals, health centers and 
medical institutions to connect with other Electronic Health Record (EHR) 
data, such as clinical notes, to promote health surveillance, disease detection 
and treatment management.

With this paper, I propose a mobile device for personal health data sharing, 
such as a user-controlled, block chain-based framework for the exchange 
and collaboration of personal health data. The entire system can be based on 
Hyper-ledger Fabric [14], which is nothing but a permitted block chain that 
often needs the authentication of the network nodes, and realizes a privacy 
preserving personal healthcare system with a wider coverage of the healthcare 
environment from end to end encrypted computer to the cloud, as well as the 
focus on health data consumer ownership. As follows, the remainder of the 
paper is structured. The overall system design, including the architecture, 
system organizations, main establishment and system procedures, comprises 
the methodology. Then there are substantial allegations relevant to work 
completed. The scheme discussion is defined, concludes the paper and talks 
about the future work.

Methodology
System Design
System overview

The proposed model adapted from ‘user-centered sharing of personal health 
data’ is Figure 3 [15]. Six entities are included, namely users, wearable 
devices, providers of healthcare, hospital bed/room, database cloud and 
network block chain.
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Proposed Model

System entities

User: System users obtain information from wearable devices that track the 
health information of users, such as walking distance, sleeping conditions, 
and heartbeat. The above data will then be submitted via a mobile application 
to a cloud service hosted on a trusted platform. The individual is the owner 
of personal health data and is responsible for granting, refusing and removing 
access to the data from any other entity, such as providers and institutions of 
health care.

When every client seeks medical attention, the patient will share the 
health details with the desired physicians. Access to the data is revoked 
after the operation is completed in order to deny doctors access to the data 
consecutively. Likewise, this relates to user-healthcare provider relationships. 
In addition, the user has a provision to report regular activities according to a 
recommended medical procedure, such as medication enforcement, to share 
changes and better improvements with the treatment provider.

Wearable Device. A very significant component of the entire system that 
translates original health information into human readable format and then 
synchronizes the data also by the user to their online account. Each account 
is associated with a set of wearable devices and possible medical devices.

It will be uploaded to the blockchain network for record keeping and 
protection of integrity when a piece of health information is created. Provider 
of Treatment. A certain user is appointed by healthcare providers such as 
physicians to conduct medical tests, provide any advice or provide medical 
treatment. Meanwhile, under the user’s permission, the medical treatment 
data can be uploaded to the blockchain network for data sharing with 
other healthcare providers. And the current healthcare provider can request 
access from the user to past health records and medical services. On the 
blockchain, each data request and the corresponding data access is registered.

Bed/ Space Hospital. Users can request in any patient a hospital room/bed or 
ICU, doctors or ICU in-charge may request user data access, including user 
health data from wearable devices and medical care history, to provide better 
service duty. As such information is permanently registered on the blockchain 
network and transparency and trustworthiness is guaranteed, users cannot 
hide or alter medical care history details.
Network Blockchain. For three reasons, the blockchain network is used. 
For health information obtained from both wearable devices and healthcare 
providers, each hashed data entry for integrity protection is uploaded to 
the blockchain network. For access to personal health data from healthcare 
providers and hospitals, each request for data access should be processed 
to obtain a decentralized permission management protocol authorization 
from the data owner. The policies for access control should be stored on 
the blockchain in a distributed manner that ensures stability. In addition, 
for further auditing or review, each of the permission requests and access 
activities should be registered on the blockchain.

Database Cloud. User health related data, data requests from healthcare 
providers and insurance agencies, data access history and data access 
management policies are stored in the cloud database. Access to data is 
accountable and traceable. Once data leakage is detected, the malicious entity 
can be identified.

Requirements

The features required by stakeholders and potential users consist of a device 
capable of monitoring the vital signs of the patient. If a current activity is 
common, suspicious or unsafe for the monitored individual, the system 
should identify it and alert the people responsible for treatment in the event 
of irregular occurrences. A subsidiary component should include additional 

Figure 3. ‘Exchange of Patient-centric personal health data’ (Liang et al., 2017)
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details regarding such vital signs in the case of activity that is regarded as 
suspicious or hazardous. In addition, the criteria that the system should be 
easy to install, run and maintain and also guarantee the privacy of the subject 
are also the system’s general constraints.

In addition, real-time safe non-invasive measurements are critical basic 
constraints of the monitoring of vital signs. As a basic restriction, the high 
validity of the behavior definition is also considered. In Table 1, both general 

Next, the above map is compared using machine learning techniques 
against typical behavior patterns, and the event is labeled. Various machine 
learning algorithms such as decision trees, Support Vector Machines (SVM), 
k-Nearest Neighbor (KNN) and Behavior Vector (BV) have many advantages 
that the behavior classification approach can capitalize on. Developing the 
same six-component BV behavior classification consists of five components 
based on data collected, such as Time of Day (ToD), Apartment Segment

(SoA), Zone of Operation (ZoA), Mode of Activity (FoA), Period of Activity 
(DoA), and Class of Behavior (CoB) will be the sixth component, these all 
are based on the previous observations of person being monitored. The ToD 
component measurement is performed by the timer of the microcontroller and 
its configurable timeframes, which can also be modified with personal habits 
and even seasonal changes. From the predefined layout of the apartment and 
estimates of the PDR, the SoA and ZoA components are determined.

and comprehensive functionalities, along with the relevant specifications, 
are summarized. The table consists of innovations and algorithms that are 
feasible.

Figure 2 shows the flow chart of the classification of actions as natural, 
suspicious or hazardous. Health data and vital data collected from the 
attached sensors are combined with information on the time of day, section 
and area of the apartment, thus describing the current operation.

Table 1. Possible Technologies and algorithms for each functionalities

Figure 4 adapted from ‘Behavior classification scheme’ (Dziak et al., 2017)

Functionalities Particular Constraints Possible Technologies & Algorithms

General Itemized   

Vital Signs Monitoring Heart Rate, Pulse Rate Non-invasive method acoustic, infrared, Photoplethysmog-
raphy (PPG) or Heart Fitness apps 
in Smartphone (Heart Rate Plus, 
Cardiograph), Smart Watch Heart Rate 
Monitoring, Fitbit

Behavior Classification Normal, Suspicious, Danger High Validity Decision trees, genetics algorithms,
neural networks, support vector
machines, k-nearest neighborhood

Control Easy to handle Fast Inter-Integrated Circuit, Serial

Peripheral Interface

Communication Possible long range upto 40 m Secure Bluetooth,Wi-Fi, RFID, 3G/4G/5G

CCTV Surveilance Video  Labour-based surveillance system

Contact or Non-contact Photople-
thysmography

Camera Specifications  CMOS sensor, LED Flash, Pixel size of 
Smartphone Camera
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The main objective of the method of behavior classification is to make use of 
the benefits of different machine learning algorithms, such as decision trees, 

Support Vector Machines (SVM), K-Nearest Neighbor (KNN) and Behavior 
Vector (BV).

Major Arguments along with Supporting Literatures

A research published in the New England Journal of Medicine based on a 
randomized controlled trial involving patients with congestive heart failure 
found that tele-monitoring was not as effective as routine treatment while 
offering a benefit [16]. The tele-monitoring patients were instructed to call a 
specific number on a regular basis and answer a set of questions about their 
symptoms using a keyboard [17]. Actually, Chaudhry et al. [17]’s method is 
somewhat different from the technique of remote patient monitoring (RPM) 
described in the preceding overview, which involves the collection and 
transmission of real-time physiological data through point-of-care devices. 
Tele-monitoring is analogous to Remote Patient Monitoring (RPM) in the 
sense of Forbes’ [16,17] research, and Chaudhry et al. [17] also correlates 
RPM with negative results, and this needs to be explained at the outset. It’s 
more difficult to distinguish between various types of patient monitoring 
involving modern and cutting-edge technologies without RPM terminology 
calibration and definition.

Discussion

Remote Patient Monitoring (RPM) is largely based on the willingness of 
someone to control their wellbeing. Also fresh or cutting-edge technology-
based RPM implementation will go for a toss if the patient is not able to 
be an active participant in their treatment. In the Indian sense, cost is also 
an obstacle to its widespread use. Its integration into clinical practice has 
also been a challenging in the absence of adequate reimbursement criteria 
for RPM services [11]. RPM incorporation is also correlated with the shift in 
responsibility that leads to problems with liability [11].

These recommendations are not explicit for clinicians to act any time they 
are going to receive a warning, regardless of the need of urgency or not. To 
manage the constant patient data flow, there should be dedicated professionals 
in healthcare. New & cutting-edge technology can become an obstacle to 
certain essentially non-technological healthcare providers, although it is 
implemented with the goal of increasing the productivity of the same. There 
are some common challenges that are usually faced by health informatics and 
cutting-edge innovations that relate to RPM.

Table 2: Components of the Behavior vector

Components of the Behavior vector

ToD SoA ZoA FoA DoA(Min) CoB

Morning Bathroom Of Lying Lying 10/15/30/120 Normal

Afternoon Bedroom Of Sitting Standing 15/23/45/180 Suspicious

Evening Antechamber Of Standing Sitting >15/>23/>45/>180 Danger

Night Kitchen Of Walking Walking   

 Living Room  Tumble   

RPM offers plenty of device options in its implementation, always 
depending on the illnesses or comorbidities monitored. The only major 
requirement is data transaction and interoperability between many 
components. In addition, the deployment of RPM and the successful 
operation of the same, largely depending on an extensive and seamless 
wireless communication system, may not presently be feasible to make 
this available in rural parts of India. As RPM involves the transmission 
through telecommunications networks of sensitive information of patients, 
there might be a concern of the information security and data privacy [11].

As discussed in this paper, Blockchain Technology can solve that. In Kim 
et al [12] for healthcare data sharing, a mobile application is implemented 
but is limited to patients and doctors. (Petersen et al. 2016) suggests an 
interoperability proof in order to avoid the cost of computation, but did 
not mention access control. Zhang et al. [18] addresses the social network 
domain adoption of blockchain, but does not fully explore the benefits of 
blockchain. Patientory McFarlane [19] is designed to use Ethereum for 
the healthcare storage network, but the cryptography methods are highly 
dependent on data privacy. The blockchain adoption in the Internet of Things 
environment Liang, [15] is addressed. MedRec [20] is a record management 
system focusing on EMRs using smart contract, but raises privacy concerns.

Conclusion

I proposed a design in this paper to implement a handheld mobile healthcare 
system for the collection, sharing and collaboration of personal health 
data between individuals and healthcare providers, as well as healthcare 
institutions. It is also possible to extend the system to accommodate the use of 
health data for research purposes. The system is implemented in a distributed 
and trustless manner through the adoption of blockchain technology for 
secure exchange of patient health data. The functions of the algorithms 
mentioned are such that they ensure that data records are handled and that 
both their integrity and privacy are preserved at the same time. The unique 
concept of the Hyperledger Fabric-supported channel to deal with the isolated 
communication required by specific scenarios are also mentioned here. For 
future study, there is a need to explore a combination of both personal health 
data and medical data together and to cover a broader scenario.
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