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Introduction

Muscular dystrophies (MD) are heterogeneous group of genetic disorders 
including more than 30 different types [1,2]. They are generally characterized 
by progressive degeneration and fibrosis of the skeletal muscles. These 
disorders are mostly due to gene defects in important structural proteins 
in muscle which lead to muscle tissue damage and eventually partial or 
complete loss of muscle function with various morbidity or mortality [3]. 
Though in many cases the defective genes are known, there is no definitive 
cure so far. Meanwhile gene delivery or stem cell based therapies are 
promising approaches to correct the gene defect or restore the skeletal 
muscle tissue with healthy stem cells which provide the correct genetic 
information to the muscle [4]. However, except finding the right type of stem 
cells to restore the muscle, one of the major hurdles in stem cell therapy is the 
route of cell delivery into the dystrophic muscle. Due to complexity of the 
muscle groups involved in different muscular dystrophies, local cell delivery 
is not a feasible and practical approach [5-7]. Therefore, ideally the cells 
needed to be administered systemically to reach multiple involved muscle 
groups. These editorial overviews common types of muscular dystrophies, 
different stem cell populations tested for systemic delivery/engraftment 
into skeletal muscle and outlines key factors and challenges for successful 
systemic cell delivery, migration and engraftment into skeletal muscle.

Common Muscular Dystrophies

The most common and most severe form of MD in children is the Duchenne 
Muscular Dystrophy (DMD) which is a recessive x-linked disease and 
therefore affects mostly males. DMD is caused by mutations in the 
dystrophin gene which results in the absence of dystrophin protein leading 
to membrane instability, degeneration and finally loss of the muscle and its 
gradual replacement by adipose and fibrotic tissue [8,9]. The disease starts

of the age of 3-5yrs and muscle weakness is first seen in the upper leg and 
arms and progresses rapidly into the loss of the movement ability and later 
to severe cardiopulmonary complications and patient’s death in the mid 20’.

Another common form of MD is the Becker Muscular Dystrophy 
(BMD). It is similar to DMD and characterized by the inherited mutation 
in dystrophin gene which leads to production of less functional forms of 
dystrophin. It again affects mostly boys, but this disease progresses less rapid 
as compared to DMD. The disease develops later with an onset between 
10 yrs of old to the adulthood. The weakness is much milder and more 
variable including being limited to certain muscles such as the quadriceps 
muscles. Cardiopulmonary complications- as seen in DMD- are not as 
common in BMD patients. Some patients can be asymptomatic for years or 
with very slow and mild progression having a nearly normal life span [8,9].

Myotonic Muscular Dystrophy(MMD) is another common (most common 
adult form of MD) inherited muscle dystrophy disorder caused by a gene 
defect of DMPK (Type 1) and CNBP (Type 2) leading to a progressive muscle 
wasting of the voluntary and involuntary muscles. MMD is characterized 
by prolonged muscle contraction and difficulties to relax after use and 
affect muscles of the lower leg, arms, neck and face [10,11]. Symptoms 
can develop from the time of birth, in childhood or in the adulthood. It is 
often a multisystem disorder involving cardiac, respiratory, ocular and 
gastrointestinal problems and also can lead to congenital impairment [12].

Emery Dreifuss Muscular Dystrophy(EDMD) is another common slow 
progressive MD caused by a gene mutation leading to the loss of Emerin and 
changes of the Lamin A and C. EDMD starts in the mid childhood to second 
decade of life and is characterized by muscle weakness (mostly shoulders, 



Enliven Archive | www.enlivenarchive.org

 
 
2015 | Volume 1 | Issue 12

upper arms and calf muscles), joint stiffness (contractures in elbows, neck 
and heels) and cardiac complications such as conduction blocks [13,14].

Other major MDs are the Congenital (CMD), Facioscapulohumeral 
(FSHD), Limb girdle (LGMD), Oculopharyngeal (OPMD) and Distal 
Muscular Dystrophy (DD). All of these disorders have progressive muscle 
degeneration and can be developed at birth or later in the adulthood; some 
of them include other systemic complications including cardiac, respiratory, 
gastrointestinal and neurological features [1-3]. But they all have one in 
common; they are inherited, progressive and systemic muscular dystrophies 
resulting in the dysfunction and atrophy of multiple muscles over time 
and unfortunately there is no cure for them so far. Thus it is important not 
only to find the right treatment but to to identify the best delivery aaproach 
which allows a widespread distribution of the delivered gene vectors or cells 
into the affected muscle groups in order to warrant a therapeutic outcome.

Stem Cells Tested Systemically for Muscle Repair

So far, various stem cells and muscle progenitors have been tested for cell 
therapy in MDs. On the top of these lists are muscle adult stem cells and 
myoblasts. Skeletal muscle stem cells, called Satellite Cells (SCs) which 
reside at the periphery of the muscle fiber were among early stem cells which 
have been used for cell based therapy for MDs [15,16]. Despite their superior 
differentiation potential, low migration capacity in the muscle tissue after 
intramuscular (IM) injection limited their application [5,6,17,18]. Moreover, 
systemic delivery such as intra-arterial route was also unsuccessful due 
to their inability to cross the vessel wall into the muscle interstitium.

Another group of stem cells which have been tested for systemic cell delivery 
are muscle derived stem cells (MDSCs). These cells can be separated from 
skeletal muscle after enzymatic digestion and serial pre-plating. They express 
different levels of Sca-1 and CD34 and are able to differentiate into major 
mesodermal lineages such as blood, bone or muscle [19,20]. Systemic cell 
delivery of MDSCs using intra-venous (IV) or intra-arterial (IA) routes has 
been performed to evaluate their possible engraftment into skeletal muscle 
[21,22]. Interestingly, these cells demonstrated muscle homing ability and 
adhesion and transmigration into muscle. Moreover, they have the potential 
to engraft into skeletal muscle and express dystrophin in mouse model 
for DMD (mdx mouse). Furthermore, their engraftment can be improved 
by muscle injury/ damage after cell delivery. However, the engraftment 
efficiency needs to be improved to provide a significant therapeutic outcome.

Muscle side population cells (SP cells) are another group of muscle stem 
cells which have been tested for systemic cell therapy in mice [23]. These 
cells can be purified by cell sorter based on their efficient efflux of vital DNA 
dye Hoescht 33342. When transplanted using intra-arterial (IA) route through 
femoral artery, these cells were able to engraft into perfused muscles and 
differentiate into mature fibers [24]. However, the engraftment efficiency was 
below therapeutic level.

Another group of muscle stem cells tested for systemic delivery into muscle 
are CD133+cells which were initially isolated from peripheral blood [25] and 
later on from skeletal muscles [26]. Both have been tested for intramuscular 
and intra-arterial cell delivery. Upon transplantation, they give rise to human

myofibers and demonstrate great engraftment after IM injection. However 
their IA engraftment was at modest levels.

Mesenchymal stem cells (MSCs) were another group of the cells which have 
been tested for myogenic potential. First studies using MSCs demonstrated 
limited myogenic differentiation potential in dystrophic mice [27] as the level 
did not reach therapeutic levels. Later, other groups [28,29] reported a higher 
level of engraftment using modified human MSCs after intra-muscular (IM) 
and intra-venous (IV) delivery in mice; however, still functional recovery 
could not be achieved [30]. Recently another group reported a subpopulation 
of CD271+ MSCs which are able to differentiate efficiently into myotubes 
by forced MyoD over-expression. Interestingly, these MyoD-induced MSCs 
were able to engraft after intra-arterial delivery in a dog model for DMD, 
through the level of dystrophin expression was unfortunately low [31].

Another important group of stem cells tested for muscle repair are vessel 
associated pericytes. Many studies have used human mesoangioblasts or 
pericytes as vessel associated progenitors in murine [32,33] or dog models 
[34] for MDs. These studies demonstrated their efficient engraftment 
following intra-arterial (IA) delivery in the downstream muscles of 
affected animal. Based on available data, mesoangioblasts are considered 
as one of the best cell therapies suitable for systemic delivery in MDs.

Adipose derived stem cells (ADSCs) have also been tested for cell therapy 
for muscle repair [35,36]. Both studies used intra-venous (IV) delivery 
and new engrafted muscle fibers and partial functional improvement was 
observed in treated muscles. Interestingly, cell surface marker expression 
and their proliferation and differentiation capacity had some similarities 
to the mesoangioblasts. Furthermore, these cells can be isolated easily 
in abundance from patients by liposuction which is another advantage for 
these cells. Further studies needed to validate the efficiency of ADSCs 
for skeletal muscle repair in MDs following systemic delivery routes.

Human Embryonic (ES) and induced Pluripotent Stem Cells (iPSCs) are 
other major groups of stem cells which have offered promising opportunities 
for stem cell based regenerative medicine. In particular, iPS technology has 
the advantage of avoiding ethical and immunological concerns associated 
with ES cells as they are directly derived/reprogrammed from patient’s 
somatic cells [37]. Previous studies using murine or human ES/iPS cells 
have demonstrated high efficiency of myogenic induction using transient 
PAX3 or PAX7 over-expression [38,39]. Derived myogenic cells were able 
to engraft and express dystrophin in vivo and seed satellite stem cell pool 
and improve muscle contractility following IM injection in mice models for 
MDs. Moreover, in case of murine ES/iPS cells, they demonstrated systemic 
engraftment potential following IA or IV injection [39,40]. Also, another 
group [41] have recently derived genetically corrected mesoangioblasts 
– like cells from patient’s iPS cells and demonstrated their engraftment 
potential in a limb girdle muscle dystrophy (LGMD) mouse model. These 
cells also demonstrated great myogenic differentiation and improved muscle 
function after intra-arterial (IA) delivery. Overall, iPS based cell therapies for 
skeletal muscle disorders is a fast pacing field and more research are being 
done in order to differentiate the right type of patient- specific muscle stem 
cells from iPS cells suitable for gene correction and systemic therapy in MDs.
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Systemic Cell Delivery Routes to Target Skeletal Muscle
As mentioned above, one of the major drawbacks in cell therapy for 
MDs is poor cell survival and migration following IM injection as 
well as multi-compartment muscle involvement in many MDs which 
makes IM injection not a feasible clinical approach. Therefore in theory, 
systemic cell delivery provides much better efficiency to reach and 
target multiple muscle groups and to replace and repair damaged muscle.

Initially intra-venous (IV) route (either the tail or femoral vein) was used 
for mesoangioblasts delivery into dystrophic mice muscles. However the 
engraftment efficiency was low and did not reach therapeutic potential 
[33]. This was mainly due to cell entrapment in other organs (such as lung 
and spleen barriers) and their dilution before reaching the skeletal muscle. 

Therefore in order to bypass this first-pass effect, the intra-arterial (IA) 
method was considered after first studies showing a better engraftment 
in the target tissue compared to the IV delivery. For IA delivery, many 
studies have used femoral artery [33,41,42] for cell delivery into hind 
limb muscles, while few others used the iliac artery approach [22,43]. 

Intra-arterial cell delivery using femoral artery cannulation is a well-practiced 
method which allows proper and uniform perfusion of downstream muscles 
in animal models. A recent study [44] has investigated time-course kinetic 
and efficiency of IA (intra-femoral artery) cell delivery and migration into 
dystrophic mice muscles over 24 hours using nano particle-labeled CD133+ 
cells (from human peripheral blood) combined with micro CT imaging. 

The data indicated progressive distribution of the cells from anterior to 
medial and posterior regions of perfused hind limb in the first 2 hours after 
IA delivery. Interestingly, serial passage of the cells through circulation was 
necessary to enhance cell migration into dystrophic muscles from 4% at the 
time of infusion to a maximum 20% of injected cells 60 minutes later [44]. 

Major distributions were seen in Quadriceps, Gastrocnemius and rear thigh 
muscles compared to Tibialis Anterior and Extensor Digitorum Longus. This 
might be attributed to the higher capillary density in slow-twitch muscles 
compared to fast-twitch muscles such as later ones (Cho et al. [47]). As 
expected, cell presence was negligible in the contra-lateral muscle tissue 
(less than 3% in average). Furthermore, 12% of the injected cells were 
entrapped in other non-target organs such as spleen, kidney and lung [44]. 

Overall, based on the available data intra-arterial (IA) cell perfusion in an 
established and well characterized route which demonstrates uniform and 
robust cell infusion into downstream skeletal muscles and does not have 
short-comings associated with IV route such as first-pass liver, lung and 
spleen barriers.

Important factors in Systemic Stem Cell Delivery efficiency 
into Skeletal Muscle

Major determining factors in cell engraftment after intra-arterial (IA) delivery 
can be classified in two groups:
a) Migration capacity from capillaries to the muscle interstitium
b) Cell survival and differentiation potential into myofibers

These factors are demonstrated in Figure 1. At first, infused cells have to 
adhere to the endothelial wall and pass through endothelium into interstitial 
space. Several factors are important for this process including the presence 
of proper adhesion molecules and their ligands on cells and endothelium, the 
presence of inflammatory cytokines and chemotactic signals from inflamed 
muscle and their receptors on the cells and finally hemodynamic factors 
which influence intra-capillary pressure, time for interaction between the cell 
and endothelium and endothelium pore size and permeability to the cells.

Figure 1- Important factors for intra-arterial stem cell delivery and engraftment into skeletal muscle

Schematic figure demonstrates factors influencing cell delivery and engraftment into skeletal muscle following intra-arterial infusion of the cells. 

(a) Upper left image demonstrates cannulation site of femoral artery in mouse at proximal point to ensure complete hindlimb muscle perfusion. As 
discussed in the article, appropriate balance between volume and hydrostatic pressure (b) helps cell perfusion and migration while avoids tissue swelling 
and edema (c). Expression of right ligands and receptors for adhesion and diapedesis of the cells (d) and the presence of appropriate inflammatory 
cytokines and chemotactic factors (e) in inflamed muscle and their receptors on cells facilitates stem cell migration into muscle interstitium and their final 
maturation into myofibers (f).

Zugspitze27

+

Hydrostatic pressure

Swelling
Edema

Intra-arterial (IA) cell delivery into skeletal muscle

-

Cytokines 
Inflammation 

Blood flow

Chemotactic factors 

a

b

c

d

e

f



Enliven Archive | www.enlivenarchive.org

 
 
2015 | Volume 1 | Issue 14

Previous studies using MDSCs and CD133 cells have identified few of 
important adhesion molecules governing adhesion, rolling and diapedesis of 
the cells [21,43]. Among these molecules, the expression of VCAM-1 on 
endothelium is crucial as it facilitates adhesion of the infused cells through 
its ligand VLA-4 (CD49d, CD29 dimer). Therefore both endothelium and 
infused cells should express appropriate receptors and ligand in order to 
support proper adhesion and subsequent diapedesis of the cells through 
endothelium. Interestingly, inflammation and exercise of the dystrophic 
muscle prior to cell infusion can significantly increase the expression of 
VCAM-1 on muscle endothelial capillary network. Other important factors 
which might affect the entire process of adhesion and rolling of the cells are 
LFA-1 (ICAM-1 ligand), CD44, PSGL (E-selectin ligand) and L-selection 
(receptor for MadCAM-1).

Another important factor in the migration efficiency of transplanted cells is 
the presence of inflammatory cytokines in the target muscle tissue before 
cell infusion. Generally in the case of muscular dystrophies, the environment 
of the dystrophic muscle is already inflamed by the presence of certain 
growth factors, inflammatory and chemotactic cytokines such as TNFα, FGF, 
HGF, SDF-1 and its receptor CXCXR4, oxidative stress and immune cells. 
Indeed, many of these factors provide chemotactic signaling for attracting 
inflammatory cells to the muscle. 

This chemotactic condition can also be used for attracting infused stem cells 
to repair the inflamed muscles by inducing inflammation or mild injury in the 
muscle through exercise which facilitates cell migration and engraftment, 
as it has been demonstrated in mice models using swimming exercise [22].

Another example is nitric oxide pre-treatment which enhanced 
mesoangioblasts migration capacity into muscle due to chemotactic response 
to the growth factors and protected them from apoptosis [45]. Also pre-
treatment of mesoangioblasts with TNF-α and SDF-1 factor improved their 
migration into the interstitium due to the expression of surface molecules 
important for cell adhesion and migration [46]. Furthermore, transfection 
of the cells with L-selectin and α4-integrin increased the engraftment level 
by threefold. More importantly, these pre-treatments did not change the 
myogenic differentiation of the infused cells while enhanced their rolling and 
adhesion capacity to the vessel wall.

Lastly hemodynamic factors also play a very important role in IA cell 
delivery outcome. These can be affected through changing infusion volume, 
rate of infusion, cell density, vascular tone, hydrostatic pressure and the 
presence of swelling and edema in inflamed muscle. The comparison of 
different volumes in mice studies has indicated that the using larger volume 
for IA infusion improves gene delivery into muscle [47]. The reason is that, 
first a larger endothelial surface area will be targeted before dilution in blood 
and second, the permeability is increased due to the higher pressure allowing 
a better migration into the tissue. In addition, pre-treatment of vasoactive 
agents such as histamine can increase the permeability of the capillaries in 
the skeletal muscle [48].

On the other side, the pressure in the muscle tissue induced by inflammation 
and intra-arterial infusion plays a crucial and may be a contradicting role. 
Obviously higher pressure will increase cell migration due to the increased 
hydrostatic pressure which forces the cells into the interstitium. However,

increased bulk fluid flow into the muscle tissue will eventually lead to 
muscle swelling and edema and consequently a reduced infusion due to 
the compression and eventual collapse of capillaries [47,49]. Therefore 
appropriate balance and fine tuning between volume and rate of infusion 
and hydrostatic pressure is essential to ensure proper tissue perfusion with 
minimal tissue swelling and capillary collapse.

Concluding Remarks

So far, different stem cells including mesoangioblasts, pericytes, MSCs, 
MDSCs, SP cells and ES/iPS derived cells have been tested for systemic stem 
cell therapy in animal models of muscular dystrophies. Available data from 
these studies suggests intra-arterial (IA) delivery as a potential systemic cell 
delivery route in these cases, though the engraftment efficiency appears to be 
very variable and in many cases below the therapeutic range. 

Since multiple parameters are involved in cell delivery, adhesion, diapedesis 
and engraftment, this goal cannot be achieved without a detailed adjustment 
of the following parameters: a) Conditioning the environment of the 
recipient dystrophic muscle through inflammatory cytokines to improve cell 
adhesion and migration b) donor cell selection and modification based on 
expression of important adhesion molecules c) pre-treatment of the cells and 
capabilities with cytokines and vasodilators before infusion and finally d) 
accurate adjustment of hemodynamics through volume and flow rate control 
are key factors for a successful stem cell delivery into dystrophic muscle. 

In addition, using different arteries in upper regions is another way to 
improve cell delivery to larger skeletal muscle groups esp. in case of systemic 
dystrophies. Finally evaluation of cell entrapment and their long-term side-
effects in off-target organs is another important safety issue which needs 
to be addressed appropriately. Therefore, further studies are warranted to 
investigate the consideration of all these different factors in order to find the 
best way of systemic stem cell delivery into skeletal muscle with superior 
therapeutic outcome and minimal side-effects.
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