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Background

Meta-analyses are widely used to summarize results from different studies. 
Yet, publication bias - when published studies included in a meta-analysis 
do not represent all studies on the topic of interest – is expected to cause 
an upward bias of effect sizes, because statistically significant results may 
have a higher likelihood of being published [1,2]. While a careful search 
for unpublished results in a systematic review process is likely to minimize 
the effects of publication bias, this approach may not always be feasible 
or successful. Alternatively, different methods to detect and adjust for

publication bias are available. Such models should consist of two parts, 
namely the effect size and the selection process part [2,3]. The former reflects 
the distribution of the effect sizes in the absence of publication bias, whereas 
the latter models how this unknown distribution is affected by publication 
bias [2]. Modeling the selection process may either depend on the effect 
size estimate and corresponding standard error separately (Copas selection 
model) or depend on the p-value only (weight functions) [3].

Abstract
Background

Publication bias – when non-significant results (from smaller studies) become underrepresented in the literature - results in an overestimation of average 
effect sizes. Several statistical methods have been developed to detect and describe publication bias, and to provide adjusted average effect sizes. However, 
these approaches generally oversimplify reality. Here, a novel Bayesian model is developed which can explicitly model changes in publication bias with 
covariates leading to a better understanding of the sampling procedure of publication bias, and more realistic adjusted effect sizes. This new approach is 
applied to simulated data and to empirical data from a recent meta-analysis of associations between fluctuating asymmetry and health and quality in humans.

Results

The Markov Chain Monte Carlo showed rapid convergence. The simulations showed that the new approach detects associations between publication 
bias and sample size and provides unbiased average effect sizes. The estimated average effect size for the empirical dataset was close to those reported 
using other methods. The level of publication bias dropped rapidly when sample sizes approached 150 individuals. Posterior predictive checks showed 
an overall appropriate model fit.

Conclusions

The new model proposed here allows an objective analysis of how the selection process due to publication bias changes with covariates. The exploration 
of the performance of this new approach indicated advantages over existing methods. It can thus be concluded that the model provides an innovative way 
to detect and study publication bias and reaches more realistic adjusted effect sizes.
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Detecting the presence of publication bias is as such important, but evaluating 
the importance and impact is even more relevant. While models adjusting for 
publication bias provide an estimate of average effect size using the model of 
sampling behavior to correct for the bias, it has often been argued that these 
adjusted estimates ‘should not be taken too seriously’ [2,4,5]. In line with this 
view, the aim of this paper is to develop a new approach to model publication 
bias, primarily extending the capabilities of exploring the selection process. 
More specifically, the model developed here allows exploring how the 
selection process changes with sample size (or any other covariate). This 
aspect has not been incorporated directly in present selection models (see 
e.g., [1], although sample size does make part of selection models through 
p-values and/or standard errors), while it is likely that publication bias is 
stronger in smaller studies. Indeed, if an effect size is not statistically 
significant in smaller studies, it is more likely due to a lack of statistical 
power. Consequently, such studies have a higher probability of not being 
published. Stronger publication bias in smaller studies results in a negative 
association between effect sizes and sample sizes, which is a popular way to 
evaluate the presence of publication bias [6,7], and to obtain adjusted average 
effect sizes (Egger’s regression [8]). It is therefore important to generalize 
selection models to a two-dimensional selection function depending on 
both p-values (or effect sizes) and on the underlying study size [2]. Such an 
approach will be presented here and the estimation procedure is performed 
in a Bayesian framework. First, the model is formally developed. Second, 
results are obtained for a set of simulated data. Finally, it is applied to the data 
from a recent meta-analysis [9].

Results

Model Development

Let us start building the model from a simple random effects linear model 
and assume that effect sizes ESi (where i = 1 … I, I=number of effect sizes 
in the meta-analysis from K studies (where K<I)) reflect a sample from an 
unknown distribution phi (ϕ) with unknown parameters theta (θ) : ESi~ φ(θ). 
In the absence of publication bias, it is often assumed that the effect sizes ESi 
follow a normal distribution with an overall mean of β0 and between-study 
variation σ   (the random effects part of the model). If the effect sizes are 
expressed as correlation coefficients – as will be done in the illustrations 
below – the residual sampling variation σ2 can be expressed as (1-r2 ) ⁄ (N-2) 
), i.e., the variance of Pearson’s correlation coefficient. Formally, the model 
can then be written as:

s
2

Where k=1 … K, the number of studies. In the absence of publication bias, 
the effect sizes are expected to follow a normal distribution reflecting the 
unbiased true distribution of all possible effect sizes. However, if publication 
bias exists, an excess of statistically significant effect sizes (or a shortage of 
non-significant outcomes) should emerge. This can be included in the above

With linear predictor:
(1)

(2)

(3)

And between study variation:

model by assuming that the effect sizes reflect a sample from a mixture of two
distributions, one reflecting an unbiased sample (free of publication bias as in 
equation 1) and a second which reflects the excess of statistically significant 
results. The latter can be represented as a truncated normal distribution 
with lower limit equal to the critical value above which the effect size was 
statistically significant. The mixture distribution can then be written as:

Where pi is either 0 or 1 assumed to follow a binomial distribution with 
probability P, i.e., the proportion of excess of effect sizes due to publication 
bias. Figure 1 provides a graphical display of this model.

An association between the magnitude of publication bias (the proportional 
excess of statistically significant results) with a covariate (like sample size) 
can be included by modeling pi as a generalized linear model with logit link 
and binomial error structure:

Where the parameter α1 reflects the association between the level of 
publication bias and sample size.

Equations 2, 3, 4, 5 and 6 thus harbor the two parts of a model of publication 
bias. The effect size part is captured in equations 2 and 3, while the selection 
model part is formulated in equations 5 and 6. Equation 4 links these two 
parts to the observed distribution of the effect sizes as a mixture of 2 normal 
distributions, one reflecting the unbiased distribution of effect sizes, and the 
other accounting for publication bias.

And linear predictor:

(4)

pi~binomial(Pi)

= α0 + α1 X ni1-Pi

log
Pi( (

(5)

(6)
ESi~N(μi,σ

2 )

μi=β0+bk

bk~N(0,σ  )2
S

_

Figure 1 - Graphical representation of the mixture model applied to 
model publication bias.
The underlying idea is that there is some unknown and unobservable true 
distribution of effect sizes (which I assume to be normal with mean equal 
to 0.2 and standard deviation equal to 0.1 in this example) indicated in 
black in the left panel. The distribution that is observed in the literature 
is assumed to emerge from all significant effect sizes (i.e., no publication 
bias, grey) and only a part of non-significant effect sizes (green) due to 
a smaller likelihood of getting published in the presence of publication 
bias. The resulting distribution (red on right panel) thus shows an excess 
of statistically significant results.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖~(1 − 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖)𝑁𝑁𝑁𝑁(𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 ,𝜎𝜎𝜎𝜎2) + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁(𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 ,𝜎𝜎𝜎𝜎2) �𝑡𝑡𝑡𝑡�1−𝛼𝛼𝛼𝛼2�,(𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖−2)
�𝜎𝜎𝜎𝜎2� 
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On the basis of the posterior distribution of the ESi,t
rep, a model prediction 

and its 95% C.I. can be estimated. The difference between the model 
predictions and the observations can then be considered as a measure 
of model fit or adequacy. Because in this application, I did not intend 
to compare competing models, I will only present these differences and 
indicate which observations did not fall within the respective 95% C.I. of 
the model predictions

The Simulation Study

Table 1 provides an overview of the results from the analyses of the 
six simulated datasets. As expected, the weighted average approach 
overestimated the true underlying effect size in the presence of publication 
bias. As expected, the selection model approach with monotone weight 
function did show a strong drop in the weight function for p-values smaller 
than 0.05 for the constant publication bias scenario (Figure 2). However, 
the selection model approach appeared to somewhat underestimate the 
average effect sizes irrespective of the publication bias scenario (Table 
1). The Bayesian model presented here, however, provided average effect 
sizes most closely reflecting the  underlying average under each condition. 
In addition, in the datasets where a decrease in publication bias was 
simulated, a negative slope was indeed observed (Table 1).

(7)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ,𝑡𝑡𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ~(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖∗)𝑁𝑁𝑁𝑁(𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖∗,𝜎𝜎𝜎𝜎2) + 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖∗𝑁𝑁𝑁𝑁(𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖∗,𝜎𝜎𝜎𝜎2) �𝑡𝑡𝑡𝑡�1−𝛼𝛼𝛼𝛼2�,(𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖−2)√𝜎𝜎𝜎𝜎

2�    

 

Parameter Estimation in a Bayesian Framework

Having formulated the model, I will proceed by estimating parameters in a 
Bayesian framework. This requires the determination of prior distributions. For 
the average effect size (β0) a normal prior distribution with mean equal to zero 
and variance equal to 106 was used. For the parameters on the logit scale (α0 
and  α1), a normal prior with mean equal to zero and variance 100 was used, 
to avoid introducing unwanted strong prior information for large values at the 
probability scale [10]. The prior distribution of the between-study variance was 
a truncated normal distribution with mean equal to zero and variance equal 
to 1000. To avoid numerical problems, the possible values of bk were limited 
between -0.3 and 0.3 (i.e., study-specific average effect sizes could not deviate 
more than 0.3 units from the overall average effect size). In addition, sample 
size was centered, to avoid strong correlations between α0 and α1. Parameter 
estimates were then obtained using Markov Chain Monte Carlo (MCMC) (see 

details below).

Assessing Model Fit

In a Bayesian framework, the use of posterior predictive checks has been advocated 
to explore model adequacy and detecting outliers. The principle is very simple. If 
a statistical model fits the data relatively well, the model in itself should be able 
to generate a dataset that corresponds closely with the data. Therefore, during 
all t-iterations of the MCMC, for each observation in the dataset (ESi) a replicate 
is generated on the basis of the model parameter values at iteration t as follows:

Figure 2 - Weight functions estimated for three simulated datasets with different publication bias scenarios

Weight functions shown here were for the simulations without between-study heterogeneity, but results were 
very similar for the datasets simulated with between-study heterogeneity (not shown).
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weighted average (SE) Rufibach theta (SD) Bayesian model

average intercept slope SD

N 0.154 
(0.007)

0.153 
(0.007)

0.152 
(0.009)

-10.3 
(5.89)

0.036 
(0.050)

0.037

C 0.189 
(0.006)

0.104 
(0.020)

0.137 
(0.010)

0.011 
(0.22)

0.011 
(0.021)

0.035

D 0.169 
(0.007)

0.120 
(0.022)

0.149 
(0.007)

-5.64 
(3.22)

-0.058 
(0.029)

0.024

N 0.145 
(0.008)

0.114 
(0.050)

0.143 
(0.008)

-5.42 
(1.77)

0.006 
(0.023)

0.062

C 0.207  
(0.007)

0.137 
(0.046)

0.158 
(0.009)

-0.72 
(0.36)

0.005 
(0.003)

0.057

D 0.169 
(0.007)

0.116 (0.047) 0.151 (0.008) -6.00 (2.80) -0.059 
(0.033)

0.041

Table 1 - Overview of parameter estimates from analyses of simulated data

Data were simulated under three different scenario’s of publication bias (N = no publication bias; C = constant publication bias; D = 
publication bias decreases with sample size). The true underlying effect size equaled 0.15. In addition, two levels of between-study 
variation in effect sizes were modeled (no variation and standard deviation = 0.05). The six simulated datasets were analyzed using 
three methods: (i) a weighted average was calculated assuming no publication bias; (ii) the average effect size was estimated assum-
ing publication bias independent of sample size (theta in [2]); and iii) the Bayesian model developed here was modeled, reporting the 
average effect size, the parameter estimates modeling the mixture distribution (equation 6) and the degree of between-study variation 
in effect sizes.

Results from the Bayesian model developed in this paper can be 
summarized as follows. The average overall effect size equaled 0.116 
(SE=0.013) with 95% credibility interval ranging between 0.092 and 
0.143. There was thus a robust overall association between fluctuating 
asymmetry and measures of health and quality in humans. The association 
between the degree of excess of statistically significant effect sizes and 
sample sizes (log-transformed) was negative, with an intercept of 2.82 
(SE=1.61; 95% credibility interval: -0.30 – 6.08) and slope of -1.00 
(SE=0.38; 95% credibility interval: -1.80 – -0.29). The between-study 
variation in effect sizes equaled 0.009 (SE=0.003; 95% credibility 
interval: 0.005 – 0.015). The estimated mixture distribution showed 
that the excess of significant effect sizes was mainly present for the 
smaller effect sizes (darker grey shading above critical value and more 
observations just above this threshold level, Figure 4). The negative 
association between the sample size and the level of publication bias – i.e., 
an excess of significant effect sizes – is provided in Figure 5 together with 
the effect size specific probabilities of belonging to the truncated normal 
distribution. Degree of publication bias dropped rapidly with sample size, 
yet, still some effect sizes showed some degree of likelihood of being 
associated with the truncated normal distribution. The distribution of the 
random effects followed a normal distribution and ranged between -0.15 
and 0.15 (Figure 6). Thus, constraining the range of the random effects 
between -0.3 and 0.3 to avoid numerical problems did not influence the 
results. Finally, for only 9 (3.1%) out of the 293 observations (and thus 
slightly less than the 5% expected just by chance), the observed effect 
size fell outside of the 95% C.I. of the replicate observations (Figure 
7). Thus, overall the model appeared to adequately fit the observations.

Figure 3 - Graphical exploration of the presence of publication bias in the 
example dataset.
Left: Funnel graph of the 293 effect sizes of association between fluctuating 
asymmetry and measures of health and quality in humans. Critical values 
above or below which the effect sizes are statistically significant are 
provided as dashed lines. The association between effect size and sample 
size is given using a lowess smoothing. Right panel: Distribution of 
standardized effect sizes showing a bimodal pattern reflecting a mixture 
between a normal and truncated normal distribution (see text for details).

The Analysis of an Example Dataset

As reported previously [9], there was a highly significant negative correlation 
between effect size and sample size (Spearman rank correlation = -0.34, 
p<0.0001, Figure 3 left panel) in this dataset. In addition, one can discern a cluster 
of effects just exceeding the threshold significant effect at the low end of sample 
size, indicating higher levels of publication bias in smaller studies [9]. Indeed, 
standardized effect sizes showed a bimodal distribution corresponding with a 
mixture of a normal and a truncated normal distribution (Figure 3 right panel). 
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Figure 4 - Funnel graph with mixture distribution.
Contour-plot of estimated mixture distribution (grey shading) and ob-
served effect sizes (red dots). Light grey lines represent the critical val-
ues above and below which effect sizes were statistically significant. 
The average overall effect size equaled 0.116 (see text for details).

Figure 5 - Estimated association between the degrees of publication 
bias – expressed as proportional excess of statistically significant 
results – and sample sizes.
Posterior means of effect-size specific probabilities are indicated as dots.
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Figure 6 - Distribution of the random effects (black bars) and the 
expected normal curve (grey).

Figure 7 - Exploration of model fit.
Funnel graph of observed effect sizes (black) and posterior means of 
model estimates (gray). Lines connect the observed effect sizes and their 
respective model estimates. Lines in red indicate observed effect sizes 
that fell outside the 95% C.I. of their model estimates (i.e., indicating 
poor model fit, see text for details).
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Discussion 

As publication bias can hamper the interpretation of systematic reviews 
[1], there is a need for a better understanding of the selection process which 
affects the likelihood of a study being published or not. While several methods 
have been proposed to model and adjust for publication bias, they can be 
broadly grouped in different categories. Indirect methods make use of the 
available data, and apply some statistical model to ‘account for’ the effects of 
publication bias, while, direct methods obtain missing estimates, by actively 
searching for unpublished results. While the latter is probably the only correct 
method to obtain ‘adjusted’ estimates of effect sizes eliminating the effects of 
publication bias, it may often be difficult to retrieve all unpublished results. 
Not all researchers may be willing to share unpublished results or may not be 
able to retrieve them (e.g., 

data on an old computer that crashed, or when the study was done by co-
workers who left the field). Therefore, indirect methods have received a lot 
of attention to model the selection process and obtain adjusted effect sizes. 
However, the current view is that these models are useful to explore the 
selection function, but that adjusted effect sizes are of secondary importance. 
Nevertheless, when models become more realistic, it can be anticipated that 
adjusted effect sizes will be closer to the true value. It is therefore important 
to develop more realistic models. One aspect that has not previously been 
incorporated is that the level of publication bias may change with sample size 
(or other covariates) [2].
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In this paper, a new model is proposed and implemented in a Bayesian 
framework. The model contains elements from other approaches, and has the 
additional possibilities to incorporate between-study variation in effect sizes 
and to study changes in the selection function with covariates. It makes use 
of a truncated normal distribution to represent the publication bias (see also 
[11,12]). In contrast to previous applications, the truncation parameter is based 
on the critical value above which effects sizes are statistically significant. 
In this way, the selection function is based on both the effect size and its 
standard error, as in Copa’s selection models, and also on p-values, as in 
selection models with weight functions [2]. Since the publication bias process 
is modeled here as a mixture of two normal distributions, one reflecting the 
true distribution of effect sizes, the other the excess of significant results, it is 
possible to implement a function by which this proportion of excess changes 
with a covariate. This creates a two dimensional selection function where the 
likelihood of an effect size getting published depends on both the statistical 
significance and (for example) sample size. In the application of the model 
here, a logistic regression model was implemented to study changes in 
publication bias with sample size, but alternatives could be implemented.

A small simulation study performed above indicated that the Bayesian 
model i) is capable of detecting changes in the magnitude of publication 
bias with sample size, ii) the estimated average effect sizes were close to 
the expected true value, and iii) the estimation of the average effect sizes 
was robust against misspecifying the publication bias model. In contrast, 
the selection model approach recently developed [2] appeared to somewhat 
underestimate the true average effect size, yet did indicate the expected 
sharp drop in the weight function for p-values below 0.05. While the 
simulation study provided here is too limited to weigh the advantages 
and disadvantages of selection models and the mixture approach, it does 
indicate that the Bayesian mixture model is likely to perform well for meta-
analyses of the magnitude of the empirical dataset analyzed here as well.

In applying this new model to this recent meta-analysis [9], it was possible to 
explicitly explore the change of degree of publication bias with sample size. 
The Bayesian model showed a sharp decrease in degree of publication bias 
with very low levels for sample sizes above 150 to 200. Nevertheless, a few 
effect sizes did show some evidence of being members of the truncated normal 
distribution, suggesting that the level of publication bias does not disappear 
completely. The average effect size, albeit of limited interest here, was 
within the range of proposed values by [9]. This could indicate that different 
approaches are quite robust in providing an adjusted effect size, but could 
also be seen as an indication that such adjusted effect sizes are not particularly 
meaningful. Clearly, a further comparison of results from different models of 
publication bias to a series of meta-analyses will be useful to increase our 
understanding of the value of these techniques. Nevertheless, the new Bayesian 
model appears capable of expanding the assessment of the relationship 
between publication bias and effect size by the inclusion of other variables.

Conclusions

As publication bias is an inherent problem to many meta-analyses, the 
exploration of the selection process leading to the biased published 
literature is crucial to put the outcome of the systematic literature review 
in the right perspective. The new model and statistical approach presented

here is shown to be very suitable to gain better insights in the origins of 
the publication bias process and to obtain better adjusted effect sizes.

Methods

Simulation Study

The performance of the model developed here will be explored analyzing 
six simulated datasets. In each simulation, 250 studies were simulated, with 
sample sizes sampled from a half-normal distribution with a mean of 100 and 
standard deviation of 70. The average effect size equaled 0.15 in all cases. 
Three scenarios of publication biases were simulated. No publication bias, 
a constant degree of publication bias and a decreasing level of publication 
bias with sample size. For the scenario with constant publication bias, the 
probability for a non-significant result to enter the dataset was only half of 
that of significant results irrespective of the sample size. For the scenario 
where publication bias decreased with sample size, the probability for a non-
significant to enter the dataset was assumed to increase with sample size 
by a generalized linear model with an intercept of -5 and slope of 0.1. This 
results in an increasing overrepresentation of statistically significant effect 
sizes as sample size decreases. The probability for a non-significant result 
to be published when sample sizes are below 20 was nearly zero in this 
simulation. This probability reaches about 50% for sample sizes around 50, 
and becomes nearly 100% for studies with sample sizes above 100. The level 
of publication bias was thus nearly 100% when sample sizes were 20 or lower 
and gradually disappeared towards sample sizes of 100 and higher. Each of 
these three scenario’s was simulated assuming either no or with between-
study variation in effect sizes (σs=0 or 0.05). For each of these six simulated 
datasets, average effect sizes were estimated using a weighted average (i.e., 
assuming no publication bias), a selection model with monotone weight 
function (i.e., assuming constant levels of publication bias,  [2]), and the 
Bayesian model developed in this paper (i.e., assuming a decreasing level 
of publication bias with sample size). Performances of each method will be 
compared.

Example Dataset

Finally, I apply this model to an empirical dataset, reanalyzing the meta-
analysis of the associations between fluctuating asymmetry and measures of 
health and quality in humans [9]. This dataset consists of 293 effect sizes 
from 94 studies (the ‘full sample’, see online supporting material in [9] for 
the raw data). Van Dongen and Gangestad [9] already reported potential 
problems of publications bias and attempted to adjust average effect sizes 
using different approaches. The uncorrected average effect sizes equaled 
0.18, while the corrected estimates ranged between 0.07 and 0.12. In one 
of the analyses, Van Dongen and Gangestad [9] somewhat arbitrarily – and 
based on visual inspection of the funnel graph – decided that publication bias 
would be absent or relatively unimportant for studies with sample sizes above 
150. The Bayesian model presented here will not only present an adjusted 
estimate of the overall effect sizes (which is not of primary interest, see 
above), but more importantly, allows investigating the extent of publication 
bias and how it changes with sample size.
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In a first exploration of the data, a funnel graph (see also [9]) and a histogram 
of standardized effect sizes will be plotted to visually inspect the possibility 
of publication bias and thus the presence of a mixture of a normal and 
truncated normal distribution. Next, the above model was fitted to this dataset 
in a Bayesian framework in the software package Open BUGS version 3.2.1. 
(Freely available at: http://www.openbugs.info/w/). As the distribution of the 
sample sizes was highly skewed (skewness = 2.90), sample sizes in formula 
(6) were replaced by their natural logarithm. Five independent Markov Chain 
Monte Carlo chains were run, with a burn in of 1000 iterations, and subsequent 
5000 iterations to approximate the posterior distributions. Convergence was 
reached rapidly (details not shown), and the whole estimation procedure took 
less than 5 minutes on a 64 bit laptop. Posterior distributions of the model 
parameters will be summarized by the mean, standard deviation and 95% 
credibility intervals of the 25000 iterations. To assess model fit, a graphical 
exploration of the mixture distribution, the distribution of the random 
effects and the association between effect size specific probabilities pi and 
sample sizes will be performed. In addition, posterior predictive checks were 
explored graphically.
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